精英家教网 > 高中数学 > 题目详情

【题目】小王每天自己开车上班,他在路上所用的时间(分钟)与道路的拥堵情况有关.小王在一年中随机记录了200次上班在路上所用的时间,其频数统计如下表,用频率近似代替概率.

(分钟)

15

20

25

30

频数(次)

50

50

60

40

(Ⅰ)求小王上班在路上所用时间的数学期望

(Ⅱ)若小王一周上班5天,每天的道路拥堵情况彼此独立,设一周内上班在路上所用时间不超过的天数为,求的分布列及数学期望.

【答案】(Ⅰ);(Ⅱ)答案见解析.

【解析】分析:(Ⅰ)先由题得到x=15,20,25,30,再求出其对应的概率,最后得到X的分布列和期望. (Ⅱ)利用二项分布求的分布列及数学期望.

详解:(Ⅰ)

的分布列为

15

20

25

30

所以 .

(Ⅱ)由(Ⅰ)可知,每天上班在路上所用时间不超过的概率为

依题意,

分布列为

0

1

2

3

4

5

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】据相关规定,24小时内的降水量为日降水量(单位:mm),不同的日降水量对应的降水强度如表:

日降水量

(0,10)

[10,25)

[25,50)

[50,100)

[100,250)

[250,+∞)

降水强度

小雨

中雨

大雨

暴雨

大暴雨

特大暴雨

为分析某市“主汛期”的降水情况,从该市2015年6月~8月有降水记录的监测数据中,随机抽取10天的数据作为样本,具体数据如下:
16 12 23 65 24 37 39 21 36 68
(1)请完成以如表示这组数据的茎叶图;

(2)从样本中降水强度为大雨以上(含大雨)天气的5天中随机选取2天,求恰有1天是暴雨天气的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在其定义域上为单调增函数,求的取值范围;

(2)记的导函数为,当时,证明:存在极小值点,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是.

1)求图中的值;

2)根据频率分布直方图,估计这200名学生的平均分;

3)若这200名学生的数学成绩中,某些分数段的人数与英语成绩相应分数段的人数之比如下表所示,求英语成绩在的人数.

分数段

1:2

2:1

6:5

1:2

1:1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E.

(1)求证:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切线PC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量,令函数,若函数的部分图象如图所示,且点的坐标为.

(1)求点的坐标;

(2)求函数的单调增区间及对称轴方程;

(3)若把方程的正实根从小到大依次排列为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县教育局为了检查本县甲、乙两所学校的学生对安全知识的学习情况,在这两所学校进行了安全知识测试,随机在这两所学校各抽取20名学生的考试成绩作为样本,成绩大于或等于80分的为优秀,否则为不优秀,统计结果如下图:

甲校 乙校

(1)从乙校成绩优秀的学生中任选两名,求这两名学生的成绩恰有一个落在内的概率;

(2)由以上数据完成下面列联表,并回答能否在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关。

甲校

乙校

总计

优秀

不优秀

总计

参考数据

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

span>3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a、b满足:a>0,b>0.
(1)若x∈R,求证:|x+a|+|x﹣b|≥2
(2)若a+b=1,求证: + + ≥12.

查看答案和解析>>

同步练习册答案