精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为,点在抛物线上,为坐标原点,,且.

(1)求抛物线的方程;

(2)圆与抛物线顺次交于四点,所在的直线过焦点,线段是圆的直径,,求直线的方程..

【答案】(1);(2)..

【解析】

(1)代入抛物线的方程,得,结合抛物线定义可得值;

(2)由题设知与坐标轴不垂直,可设,代入,得.利用韦达定理可得的中点为的方程为,代入,并整理得.利用韦达定理可得的中点为,结合勾股定理即可得到结果.

解:(1)将代入抛物线的方程,得,所以

因为,所以,整理得

解得

时,,满足;当时,

所以抛物线的方程为.

(2)由题设知与坐标轴不垂直,可设,代入,得.

,则

的中点为.

又因为,所以的斜率为的中点

所以的方程为,即.

将上式代入,并整理得.

,则,故的中点为.

因为是直径,所以垂直平分

所以四点在同一个圆上等价于

所以

化简得,解得

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥中,分别是的中点,动点在线段上运动时,下列四个结论中恒成立的为( .

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数,且,其中.

(1)求的值.

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是正方形,点在以为直径的半圆弧上(不与重合),为线段的中点,现将正方形沿折起,使得平面平面.

1)证明:平面.

2)若,当三棱锥的体积最大时,求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用一张长为12,宽为8的铁皮围成圆柱形的侧面,则这个圆柱的体积为_____;半径为R的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]:在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)判断曲线是否相交,若相交,请求出交点间的距离;若不相交,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc,且

1)求角A

2)若△ABC外接圆的面积为,且△ABC的面积,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数相邻两对称轴间的距离为,若将的图象先向左平移个单位,再向下平移1个单位,所得的函数为奇函数.

1)求的解析式,并求的对称中心;

2)若关于的方程在区间上有两个不相等的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个不同的零点

1)求实数a的取值范围;

2)证明:

查看答案和解析>>

同步练习册答案