精英家教网 > 高中数学 > 题目详情

.已知函数 若数列满足,且是递减数列,则实数a的取值范围是    (   )

A.B.C.D.

C

解析考点:数列与函数的综合.
专题:计算题.
分析:由函数f(x),且数列{an}满足an=f(n)是递减数列,可得n≤6时,an=(1-3a)n+10,1-3a<0,且有最小值a6;n>6时,an=an-7,0<a<1,且有最大值a7;由a6>a7,得a的取值,从而得a的取值范围.
解答:解:由函数f(x)=,且数列{an}满足an=f(n)是递减数列,则
当n≤6时,an=(1-3a)n+10;则1-3a<0,∴a>,且最小值a6=16-18a;
当n>6时,an=an-7;则0<a<1,且最大值a7=1;
由a6>a7,得16-18a>1,∴a<
综上,知实数a的取值范围是:<a<
故选:C.
点评:本题考查了数列与分段函数的综合应用问题,解题时要认真分析,弄清题目中的数量关系,细心解答,以免出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x+
1
2
,(x≤
1
2
)
2x-1,(
1
2
<x<1)
x-1,(x≥1)
,若数列{an}满a1=
7
3
,an+1=f(an),n∈N*,则a2006+a2009+a2010=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分分)本题共有小题,第小题满分分,第小题满分分,第小已知函数图像上两点.

(1)若,求证:为定值;

(2)设,其中,求关于的解析式;

(3)对(2)中的,设数列满足,当时,,问是否存在角,使不等式对一切都成立?若存在,求出角的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省黄冈市黄州一中高三(上)月考数学试卷(1月份)(解析版) 题型:填空题

已知函数f(x)=若数列{an}满a1=,an+1=f(an),n∈N*,则a2006+a2009+a2010=   

查看答案和解析>>

科目:高中数学 来源:2011年河南省开封市高考数学一模试卷(理科)(解析版) 题型:填空题

已知函数f(x)=若数列{an}满a1=,an+1=f(an),n∈N*,则a2006+a2009+a2010=   

查看答案和解析>>

同步练习册答案