精英家教网 > 高中数学 > 题目详情
精英家教网已知圆O:x2+y2=1,圆C:(x-4)2+(y-4)2=1,由两圆外一点P(a,b)引两圆切线PA、PB,切点分别为A、B,如图,满足|PA|=|PB|;
(Ⅰ)将两圆方程相减可得一直线方程l:x+y-4=0,该直线叫做这两圆的“根轴”,试证点P落在根轴上;
(Ⅱ)求切线长|PA|的最小值;
(Ⅲ)给出定点M(0,2),设P、Q分别为直线l和圆O上动点,求|MP|+|PQ|的最小值及此时点P的坐标.
分析:(1)由|PA|=|PB|,知|PO|2=|PC|2?a2+b2=(a-4)2+(b-4)2,由此能够导出点P(a,b)落在根轴l:x+y-4=0上;
(2)由|PA|2=|PO|2-1=a2+b2-1=a2+(4-a)2-1=2a2-8a+15=2(a-2)2+7,知当a=2时即P为(2,2)点时有|PA|2Min=7,|PA|Min=
7

(3)作M(0,2)关于直线L:x+y=4的对称点N,求得N(2,4),连接NO则NO分别与直线L、圆O的交点即为使|PM|+|PQ|的值最小的点P、Q,由此能够求出P点坐标.
解答:解:精英家教网(1)|PA|=|PB|?|PO|2=|PC|2?a2+b2=(a-4)2+(b-4)2?a+b-4=0
即点P(a,b)落在根轴l:x+y-4=0上;(3分)
(2)|PA|2=|PO|2-1=a2+b2-1=a2+(4-a)2-1=2a2-8a+15=2(a-2)2+7
∴当a=2时即P为(2,2)点时有|PA|2Min=7,|PA|Min=
7
(6分)
(3)作M(0,2)关于直线L:x+y=4的对称点N,求得N(2,4),连接NO则NO分别与直线L、圆O的交点即为使|PM|+|PQ|的值最小的点P、Q;(8分)
证明如下:
在L上任取不同于点P的P1点,连接P1O交圆O于Q1,则|P1M|+|P1Q1|=|P1M|+|P1O|-1=|P1N|+|P1O|-1>|NO|-1,而|PM|+|PQ|=|PM|+|PO|-1=|PN|+|PO|-1=|NO|-1,故得证;(11分)
下求|PM|+|PQ|的最小值及点P的坐标:
(|PM|+|PQ|)Min=|NO|-1=2
5
-1

联立ON与直线L的方程可得P(
4
3
8
3
)
.(13分)
点评:本题考查圆的性质和应用,解题时要注意数形结合思想的运用和公式的合理选用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
2
2
的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知圆o:x2+y2=b2与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
有一个公共点A(0,1),F为椭圆的左焦点,直线AF被圆所截得的弦长为1.
(1)求椭圆方程.
(2)圆o与x轴的两个交点为C、D,B( x0,y0)是椭圆上异于点A的一个动点,在线段CD上是否存在点T(t,0),使|BT|=|AT|,若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=9,定点 A(6,0),直线l:3x-4y-25=0
(1)若P为圆O上动点,求线段PA的中点M的轨迹方程
(2)设E、F分别是圆O和直线l上任意一点,求线段EF的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知圆O:x2+y2=r2,点P(a,b)(ab≠0)是圆O内一点,过点P的圆O的最短弦所在的直线为l1,直线l2的方程为ax+by+r2=0,那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=1,点P在直线x=
3
上,O为坐标原点,若圆O上存在点Q,使∠OPQ=30°,则点P的纵坐标y0的取值范围是(  )

查看答案和解析>>

同步练习册答案