精英家教网 > 高中数学 > 题目详情

【题目】下列有关命题的说法正确的是___(请填写所有正确的命题序号).

①命题“若,则”的否命题为:“若,则”;

②命题“若,则”的逆否命题为真命题;

③条件,条件,则的充分不必要条件;

④已知时,,若是锐角三角形,则.

【答案】②④

【解析】

根据否命题与原命题的关系可判断命题①的真假;判断出原命题的真假可判断出其逆否命题的真假,从而判断出命题②的真假;解出不等式以及,根据集合的包含关系得出命题③的真假;根据得出函数上的单调性,由是锐角三角形,得出,结合函数的单调性判断命题④的真假.

对于①,命题“若,则”的否命题是:“若,则”,故错误;

对于②,命题“若,则”是真命题,则它的逆否命题也是真命题,故正确;

对于③,条件 ,即为;条件,即为;则的充分不必要条件,故错误;

对于④,时,,当时,

上是增函数;当是锐角三角形,,即

所以,则,故正确.

故答案为②④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正项数列的前项和为,且.

)试求数列的通项公式;

)设,求的前项和为.

)在()的条件下,若对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=,其中a>0,a≠1

(1)判断的奇偶性,并证明你的结论;

(2)若关于的不等式||[﹣1,1]上恒成立,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列的公差不为0是其前项和,给出下列命题:

①若,且,则都是中的最大项;

②给定,对一切,都有

③若,则中一定有最小项;

④存在,使得同号.

其中正确命题的个数为(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地草场出现火灾,火势正以每分钟的速度顺风蔓延,消防站接到警报立即派消防队员前去,在火灾发生后分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火,所消耗的灭火材料、劳务津贴等费用为每人每分钟元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁一平方米森林损失费为30元.

1)设派名消防队员前去救火,用分钟将火扑灭,试建立的函数关系式;

2)问应该派多少消防队员前去救火,才能使总损失最少?(注:总损失费=灭火劳务津贴+车辆、器械装备费+森林损失费)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数.

1)求的值;

2)若函数在区间上单调递增,求实数的取值范围.

3)当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知底角为的等腰梯形,底边长为7,腰长为,当一条垂直于底边垂足为的直线从左至右向移动(与梯形有公共点)时,直线把梯形分成两部分,令,记左边部分的面积为

1)试求13时的值;

2)写出关于的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中表示同一个函数的是()

A.fx)=x1gx)= 1

B.fx)=x2gx)=( 4

C.fx)=gx)=|x|

D.fx)=gx)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

分别求出适合下列条件的直线方程:

(1)经过点且在轴上的截距等于在轴上截距的2倍;

(2)经过直线的交点,且和等距离.

查看答案和解析>>

同步练习册答案