精英家教网 > 高中数学 > 题目详情

为实数,且是实数,则=

A.                         B.1                           C.                       D.2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f'(x)满足0<f'(x)<1.”
(1)判断函数f(x)=
x
3
+
cosx
4
是否是集合M中的元素,并说明理由;
(2)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]30D,都存在-15P[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,试用这一性质证明:方程f(x)-x=0只有一个实数根;
(3)设
1
5
是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+c(a,b,c为实数,且a≠0),F(x)=
f(x),x>0
-f(x),x<0

(1)若f(-1)=0,曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))处的切线垂直于y轴,求f(x)的表达式;
(2)在(Ⅰ)在条件下,当x∈[-1,1]时,g(x)=kx-f(x)是单调函数,求实数k的取值范围;
(3)设mn<0,m+n>0,a>0,且f(x)为偶函数,证明F(m)+F(n)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R,H(x)=
f(x)
0
(x>0)
(x=0)
-f(x)(x<0)

(1)若f(-1)=0,且方程ax2+bx+1=0(a≠0)有唯一实根,求H(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k取值范围;
(3)设a=1且b=0,解关于m的不等式:H(m2+2)+H(3m)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,且是实数,则a=       

A.                         B.1                            C.                         D.2

查看答案和解析>>

同步练习册答案