(本小题满分12分)
某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组;第一组,第二组,……,第五组[17,18],下图是按上述分组方法得到的频率分布直方图。
(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(2)设表示该班某两位同学的百米测试成绩,且已知,求事件“”的概率。
解:(1)由直方图知,成绩在[14,16)内的人数为:50×0.16+50×0.38=27(人),所以该班成绩良好的人数为27人.
(2)由直方图知,成绩在[13,14)的人数为50×0.06=3人,
设为为,,;成绩在[17,18]的人数为50×0,08=4人,设为A、B、C、D.
若,∈[13,14)时,有,, 共3种情况;
若,∈[17,18]时,有,共6种情况;
若,分别在[13,14)和[17,18]内时,
| A | B | C | D |
| xA | xB | xC | xD |
| yA | yB | yC | yD |
| zA | zB | zC | zD |
有12种情况.
所以,基本事件总数为21种,事件“”所包含的基本事件个数有12种.
12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com