精英家教网 > 高中数学 > 题目详情
若点(1,2)在圆(x+a)2+(y+2a)2=5的内部,则实数a的取值范围.
考点:点与圆的位置关系
专题:直线与圆
分析:直接由点P(1,2)在圆(x+a)2+(y+2a)2=5的内部,得到(1+a)2+(2+2a)2<5,求解关于a的一元二次不等式得答案.
解答: 解:∵点P(1,2)在圆(x+a)2+(y+2a)2=5的内部,
∴(1+a)2+(2+2a)2<5.
即a2+2a<0.
解得:-2<a<0.
∴实数a的取值范围为(-2,0).
点评:本题考查了点与圆的位置关系,考查了数学转化思想方法,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1,侧棱AA1⊥平面ABC,A1B1=A1C1=2,AA1=1,∠B1A1C1=120°,D是BC的中点,P是AD的中点,点Q在A1B上且BQ=3QA1
(1)求证:PQ∥平面AA1C1C;
(2)求平面AA1B与平面A1BD夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=50.2,b=0.25,c=log0.25,a,b,c的大小关系为(  )
A、b<a<c
B、b<c<a
C、c<b<a
D、c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U={1,2,3,4,5,6,7},集合M={2,3,4,5},N={1,4,5,7},则M∩(∁UN)等于(  )
A、{1,7}
B、{2,3}
C、{2,3,6}
D、{1,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-2x 
1
2
,求f(x)的定义域,并证明f(x)的定义域内,当x1<x2时,f(x1)>f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
n+l
n
+
n
n+l
=2+2(
1
n
-
1
n+l
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(
π
4
4
),
1+2sinαcosα
+
1-2sinαcosα
cosα
=4,则
sinα-cosα
2sinα+cosα
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的参数方程为
x=2cosθ
y=2sinθ
(θ为参数),直线l的极坐标方程为ρcos(θ-
π
4
)=
2
,若极轴与x轴的非负半轴重合,则直线l被圆C截得的弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥A-BCD中,M为CD的中点,则
AB
+
1
2
BD
+
BC
)=(  )
A、
AM
B、
CM
C、
BC
D、
1
2
BC

查看答案和解析>>

同步练习册答案