【题目】如图,已知椭圆的一个顶点为,离心率为.
(1)求椭圆的方程;
(2)若直线与椭园C交于,两点,直线与线的斜率之积为,证明:直线过定点,并求的面积的最大值.
【答案】(1);(2)证明见解析,的面积的最大值.
【解析】
(1)求出后可得椭圆的方程.
(2)设MN:y=kx+m,M(x1,y1),N(x2,y2),与椭圆方程联立化为(1+4k2)x2+8kmx+4m2﹣4=0,△>0.由kBMkBN
利用根与系数的关系代入化简可得:m2+2m﹣3=0,解得m.再求得|MN|,点B到直线MN的距离d,可得S△BMN,通过换元利用基本不等式的性质即可得出.
(1)因为一个顶点为,故,又离心为,故即,
所以,故椭圆方程为:.
(2)若直线的斜率不存在,则设,
此时,与题设条件矛盾,故直线的斜率必存在.
设MN:y=kx+m,M(x1,y1),N(x2,y2),
联立,化为(1+4k2)x2+8kmx+4m2﹣4=0,
△=16(4k2﹣m2+1)>0,
∴x1+x2,∴x1x2.
∵kBMkBN
∴x1x2+k(m﹣1)(x1+x2)+(m﹣1)2=0,
∴k(m﹣1)(m﹣1)2=0,
化为m2+2m﹣3=0,解得m=﹣3或m=1(舍去).
即直线过定点(0,﹣3)
∴|MN|
点B到直线MN的距离d.
∴S△BMNMNd.
由m=﹣3,△>0,可知:k2﹣2>0,令t>0,
∴k2=t2+2,
∴S,当且仅当t,即k=±时,Smax.
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费对年销售量(单位:t)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费x(万元)和年销售量y(单位:t)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.
(1)根据表中数据建立年销售量y关于年宣传费x的回归方程;
(2)已知这种产品的年利润z与x,y的关系为,根据(1)中的结果回答下列问题:
①当年宣传费为10万元时,年销售量及年利润的预报值是多少?
②估算该公司应该投入多少宣传费,才能使得年利润与年宣传费的比值最大.
附:回归方程中的斜率和截距的最小二乘估计公式分别为
参考数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面是等边三角形,且平面平面,为的中点,,,.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)直线上是否存在点,使得平面?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于命题的说法错误的是( )
A. 命题“若,则”的逆否命题为“若,则”
B. “”是“函数在区间上为增函数”的充分不必要条件
C. 命题“,使得”的否定是“,均有”
D. “若为的极值点,则”的逆命题为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为抛物线的焦点,点在抛物线上,过点的直线交抛物线于两点,线段的中点为,且满足.
(1)若直线的斜率为1,求点的坐标;
(2)若,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点 共线,求k.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲和乙两个人计划周末参加志愿者活动,约定在周日早上8:00至8:30之间到某公交站搭乘公交车一起去,已知在这段时间内,共有班公交车到达该站,到站的时间分别为8:05,8:15,8:30,如果他们约定见车就搭乘,则甲和乙两个人恰好能搭乘同一班公交车去的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn,若S9=81,a3+a5=14.
(1)求数列{an}的通项公式;
(2)设bn=,若{bn}的前n项和为Tn,证明:Tn<.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com