分析 (1)椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短轴长为4,焦距为2.可得a,b;
(2)过F1倾斜角为45°的直线l:y=x+1.
把y=x+1.代入圆的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.得7x2+8x-8=0,
由韦达定理及弦长公式可计算AB.
解答 解:(1)∵椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短轴长为4,焦距为2.∴b=2,c=1,a=$\sqrt{5}$,
椭圆的方程为:$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{4}=1$.
(2)由(1)得椭圆C的左焦点F1(-1,0),过F1倾斜角为45°的直线l:y=x+1.
把y=x+1.代入圆的方程为:$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{4}=1$.得9x2+10x-15=0,
设A(x1,y1)、B(x2,y2),x1+x2=-$\frac{10}{9}$,x1x2=-$\frac{15}{9}$,
AB=$\sqrt{1+{1}^{2}}\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}=\frac{8\sqrt{10}}{9}$
点评 本题考查了直线与椭圆的位置关系,及弦长公式,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com