精英家教网 > 高中数学 > 题目详情
已知P是椭圆C:=1(a>b>0)上异于长轴端点的任意一点,A为长轴的左端点,F为椭圆的右焦点,椭圆的右准线与x轴、直线AP分别交于点K、M,=3 .

(1)若椭圆的焦距为6,求椭圆C的方程;

(2)若·=0,且,求实数λ的值.

(1)解法一:由=3,得a+3=3(-3),a=4.                        

∴b2=a2-c2=7,                                                            

从而椭圆方程是=1.                                               

解法二:记c=,由=3,得a+c=3(-c)=,

∵a+c>0,∴3a=4c.                                                     

又2c=6,c=3,∴b2=a2-c2=7,                                              

从而椭圆方程是=1.                                            

(2)解法一:点P(xP,yP)同时满足=1和(x+a)(x-c)+y2=0.

消去y2并整理得c2x2+a2(a-c)x-a3c+a2b2=0,                               

此方程必有两实根,一根是点A的横坐标-a,另一根是点P的横坐标xP,

-a·xP=,xP=.                                  

∴xP-xA=-(-a)=,xm-xP=-=.

=||=||=||,                  

=代入上式可得=2.

=,λ=2.                                              

解法二:由(1) =3,3a=4c,

可设a=4t,c=3t,则b=t,

椭圆方程可为=1,

即7x2+16y2=112t2.                                                 

设直线AM的方程为y=k(x+4t)(k存在且k≠0),

代入7x2+16y2=112t2,

整理得(16k2+7)x2+128k2tx+256k2t2-112t2=0,                            

此方程两根为A、P两点的横坐标,

由韦达定理有-4t·xP=,xP=,

∴xP=,

从而yP=.

由于kPF=,k2=,                             

=||==.

=2,λ=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P是椭圆C:
x2
8
+
y2
4
=1
上的动点,F1,F2分别是其左右焦点,O是坐标原点,则
|
PF1
|-|
PF2
|
|
PO
|
的取值范围是
[-
2
2
]
[-
2
2
]

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练22练习卷(解析版) 题型:选择题

已知F是椭圆C:+=1(a>b>0)的右焦点,P在椭圆C,线段PF与圆x-2+y2=相切于点Q,=2,则椭圆C的离心率等于(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:=1(a>b>0)过点(1,),F1、F2分别为椭圆C的左、右两个焦点,且离心率e=.

(1)求椭圆C的方程;

(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M、N两点,若AM、AN的斜率k1,k2满足k1+k2=,求直线l的方程;

(3)已知P是椭圆C上位于第一象限内的点,△PF1F2的重心为G,内心为I,求证:IG∥F1F2.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:=1(a>b>0)过点(1,),F1、F2分别为椭圆C的左、右两个焦点,且离心率e=.

(1)求椭圆C的方程;

(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M、N两点.若AM,AN的斜率k1,k2满足k1+k2=,求直线l的方程;

(3)已知P是椭圆C上位于第一象限内的点,△PF1F2的重心为G,内心为I,求证:GI∥F1F2.

查看答案和解析>>

同步练习册答案