【题目】如图,四棱锥中,垂直平面,,,,为的中点.
(Ⅰ) 证明:平面平面;
(Ⅱ)求直线与平面所成角的正弦值.
【答案】(Ⅰ)见证明 (Ⅱ)
【解析】
(Ⅰ)可证 平面,从而得到平面平面.
(Ⅱ)在平面内过作的垂线,垂足为,由(1)可知平面,从而就是所求的线面角,利用解直角三角形可得其正弦值.
(Ⅰ)证明: 平面,平面, 故.
又,所以. 故,即 ,而,所以平面,
因为平面,所以平面平面.
(Ⅱ)平面,平面, 故.又,所以.
在平面内,过点作,垂足为.
由(Ⅰ)知平面平面, 平面,平面平面 所以平面.
由面积法得:即.
又点为的中点,.所以.
又点为的中点,所以点到平面的距离与点到平面的距离相等.
连结交于点,则.
所以点到平面的距离是点到平面的距离的一半,即.
所以直线与平面所成角的正弦值为.
另解:如图,取的中点,如图建立坐标系.
因为,所以.所以有:
,,,,,
.
.,.
设平面的一个法量为,则
取,得 ,.即.
设直线与平面所成角为,则
.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程:
已知极坐标系的极点在直角坐标系的原点,极轴与x轴非负半轴重合,直线l的参数方程为:(t为参数,a∈[0,π),曲线C的极坐标方程为:p=2cosθ.
(Ⅰ)写出曲线C在直角坐标系下的标准方程;
(Ⅱ)设直线l与曲线C相交PQ两点,若|PQ|,求直线l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为 (t为参数),直线的参数方程为 (为参数).设与的交点为,当变化时,的轨迹为曲线
(1)写出的普通方程;
(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,设,为与的交点,求的极径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足.
(1)求点P的轨迹方程;
(2)设点Q在直线上,且。证明:过点P且垂直于OQ的直线l过C的左焦点F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图像相邻两条对称轴间的距离为,且,则以下命题中为假命题的是( )
A.函数在上是增函数.
B.函数图像关于点对称
C.函数的图象可由的图象向左平移个单位长度得到
D.函数的图象关于直线对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,侧面B1BCC1是正方形,M,N分别是A1B1,AC的中点,AB⊥平面BCM.
(Ⅰ)求证:平面B1BCC1⊥平面A1ABB1;
(Ⅱ)求证:A1N∥平面BCM;
(Ⅲ)若三棱柱ABC-A1B1C1的体积为10,求棱锥C1-BB1M的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com