精英家教网 > 高中数学 > 题目详情

【题目】已知命题:直线与圆有两个交点;命题: .

1)若为真命题,求实数的取值范围;

2)若为真命题, 为假命题,求实数的取值范围.

【答案】(1;(2.

【解析】试题分析:先求出分别为真命题时的取值范围:对命题,利用圆心到直线的距离小于半径,求得.对命题,利用三角恒等变形公式,将原不等式左边转化为,求得其值域为,故.1真,取的交集,得;(2)由于为真命题, 为假命题所以分别求的取值范围,然后取并集即可.

试题解析:

所以该圆的圆心为,半径为,圆心到直线的距离

为真,则圆心到直线的距离小于半径,即,解得

为真,则上有解,

因为

,又由,得

所以

,故若为真,则...................6

1)若为真,则应满足,即

故实数的取值范围为....................8

2)若为真命题, 为假命题,则一真一假,

假,则应满足

真,则应满足

综上所述,实数的取值范围为..............12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面,且的中点,上,且.

1)求证:平面平面

2)求证:平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司2016年前三个月的利润(单位:百万元)如下:

月份

利润

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测月和月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过万?

相关公式: ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:

,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.

(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?

(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,焦点 为坐标原点,直线(不垂直轴)过点且与抛物线交于两点,直线的斜率之积为.

(1)求抛物线的方程;

(2)若为线段的中点,射线交抛物线于点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】首届世界低碳经济大会在南昌召开,本届大会以节能减排,绿色生态为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新式艺,把二氧化碳转化为一种可利用的化工产品,已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为200元.

(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?

(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题对任意实数,不等式恒成立;命题方程表示焦点在轴上的双曲线.

(1)若命题为真命题,求实数的取值范围;

(2)若命题:为真命题,且为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=x﹣a2lnx,aR

I若x=e是y=fx的极值点,求实数a的值;

若函数y=fx﹣4e2只有一个零点,求实数a的取值范围 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2009年推出一种新型家用轿车,购买时费用万元,每年应交保险费、养路费及汽油费共万元,汽车的维修费为:第一年无维修费用,第二年为万元,从第三年起,每年的维修费均比上一年增加万元.

1)设该辆轿车使用的总费用(包括购买费用、保险、养路费、汽油及维修费)表达式;

2)这种汽车使用多少年报废最合算即该车使用多少年,年平均费用最少)?

查看答案和解析>>

同步练习册答案