精英家教网 > 高中数学 > 题目详情

【题目】已知函数是自然对数的底数).

(1)若函数在点处的切线方程为,试确定函数的单调区间;

(2)①当时,若对于任意,都有恒成立,求实数的最小值;②当时,设函数,是否存在实数,使得?若存在,求出的取值范围;若不存在,说明理由.

【答案】(1)上单调递减,在上单调递增;(2)①;②存在,使得命题成立

【解析】

1)利用切线方程可知,从而构造出方程组求得,得到解析式,根据导函数的符号确定的单调区间;(2)①将问题转化为对任意恒成立;设,利用导数求解,可得;②设存在,使得,将问题转化为,利用导数分别在研究的最大值和最小值,从而根据最值的关系可求得的取值范围.

(1)由题意

在点处的切线方程为:

,即: 解得:

时,,当时,

上单调递减,在上单调递增

(2)①由,即:

对任意,都有恒成立等价于对任意恒成立

恒成立

单调递增

上有唯一零点

时,,当时,

单调递减,在上单调递增

的最大值是中的较大的一个

,即

的最小值为

②假设存在,使得,则问题等价于

⑴当时,,则上单调递减

,即,得:

(2)当时,,则上单调递增

,即,得:

(3)当时,当时,;当时,

上单调递减,在上单调递增

,即……*)

由(1)知上单调递减,故,而

不等式(*)无解

综上所述,存在,使得命题成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.

(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?

(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,

已知圆和圆.

1)若直线过点,且被圆截得的弦长为

求直线的方程;(2)设P为平面上的点,满足:

存在过点P的无穷多对互相垂直的直线

它们分别与圆和圆相交,且直线被圆

截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,为线段上一点,且平面与平面所成的角为.

1)求证:平面平面

2)求二面角的平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)解关于的不等式

(2)若不等式的解集为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查煤矿公司员工的饮食习惯与月收入之间的关系,随机抽取了30名员工,并制作了这30人的月平均收入的频率分布直方图和饮食指数表(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).其中月收入4000元以上员工中有11人饮食指数高于70.

20

21

21

25

32

33

36

37

42

43

44

45

45

58

58

59

61

66

74

75

76

77

77

78

78

82

83

85

86

90

(Ⅰ)是否有95%的把握认为饮食习惯与月收入有关系?若有请说明理由,若没有,说明理由并分析原因;

(Ⅱ)以样本中的频率作为概率,从该公司所有主食蔬菜的员工中随机抽取3人,这3人中月收入4000元以上的人数为,求的分布列与期望;

(Ⅲ)经调查该煤矿公司若干户家庭的年收入(万元)和年饮食支出(万元)具有线性相关关系,并得到关于的回归直线方程:.若该公司一个员工与其妻子的月收入恰好都为这30人的月平均收入(该家庭只有两人收入),估计该家庭的年饮食支出费用.

附:

.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是半圆的直径,是将半圆圆周四等分的三个分点

(1)从这5个点中任取3个点,求这3个点组成直角三角形的概率;

(2)在半圆内任取一点,求的面积大于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是等比数列,数列是等差数列,且 .

求(Ⅰ)求的通项公式;

(Ⅱ)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,,四边形BDEF是矩形,平面平面ABCDHCF的中点.

1)求证:平面BDEF

2)求直线DH与平面CEF所成角的正弦值;

查看答案和解析>>

同步练习册答案