精英家教网 > 高中数学 > 题目详情

如图,圆O与离心率为的椭圆T:)相切于点M

⑴求椭圆T与圆O的方程;

⑵过点M引两条互相垂直的两直线与两曲线分别交于点A、C与点B、D(均不重合)。

①若P为椭圆上任一点,记点P到两直线的距离分别为,求的最大值;

②若,求的方程。

 

【答案】

(1)椭圆的方程为与圆的方程为;(2)①;②的方程为的方程为的方程为的方程为

【解析】

试题分析:(1)圆的圆心在原点,又过点为,方程易求,而椭圆过点,这实质是椭圆短轴的顶点,因此,又离心率,故也易求得,其标准方程易得.(2)①看到点到直线的距离,可能立即想到点到直线的距离公式,当然如果这样做的话,就需要求出直线方程,过程相对较难,考虑到直线,由所作的两条垂线,与直线围成一个矩形,从而,我们只要设点坐标为,则,再由点在椭圆上,可把表示为的函数,从而求出最大值.②这题考查同学们的计算能力,设直线的斜率为,得直线方程,与圆方程和椭圆方程分别联立方程组,求出点坐标,点坐标,同样求出的坐标,再利用已知条件求出,得到直线的方程.

试题解析:(1)由题意知: 解得可知:

椭圆的方程为与圆的方程           4分

(2) ①设因为,则因为

所以,           7分

因为   所以当取得最大值为,此时点    9分

②设的方程为,由解得

解得          11分

中的置换成可得      12分

所以

解得        15分

所以的方程为的方程为

的方程为的方程为         16分

考点:(1)圆的方程与椭圆的标准方程;(2)点到直线的距离,直线与圆和椭圆相交问题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:如图,圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
2
2
的椭圆,其左焦点为F,若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆的左准线l于点Q.
(1)求椭圆的标准方程;
(2)若点P的坐标为(1,1),
①求线段PQ的长;
②求证:直线PQ与圆O相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞二模)如图,圆O与离心率为
3
2
的椭圆T:
x2
a2
+
y2
b2
=1
(a>b>0)相切于点M(0,1).
(1)求椭圆T与圆O的方程;
(2)过点M引两条互相垂直的两直线l1、l2与两曲线分别交于点A、C与点B、D(均不重合).
①若P为椭圆上任一点,记点P到两直线的距离分别为d1、d2,求
d
2
1
+
d
2
2
的最大值;
②若3
MA
MC
=4
MB
MD
,求l1与l2的方程.

查看答案和解析>>

科目:高中数学 来源:2013年江苏省盐城市高考数学二模试卷(解析版) 题型:解答题

如图,圆O与离心率为的椭圆T:(a>b>0)相切于点M(0,1).
(1)求椭圆T与圆O的方程;
(2)过点M引两条互相垂直的两直线l1、l2与两曲线分别交于点A、C与点B、D(均不重合).
①若P为椭圆上任一点,记点P到两直线的距离分别为d1、d2,求的最大值;
②若,求l1与l2的方程.

查看答案和解析>>

科目:高中数学 来源:2013年广东省东莞市高考数学二模试卷(文科)(解析版) 题型:解答题

如图,圆O与离心率为的椭圆T:(a>b>0)相切于点M(0,1).
(1)求椭圆T与圆O的方程;
(2)过点M引两条互相垂直的两直线l1、l2与两曲线分别交于点A、C与点B、D(均不重合).
①若P为椭圆上任一点,记点P到两直线的距离分别为d1、d2,求的最大值;
②若,求l1与l2的方程.

查看答案和解析>>

同步练习册答案