精英家教网 > 高中数学 > 题目详情
已知双曲线的离心率,过双曲线的左焦点的两条切线,切点分别为的大小等于(    )
A.45°B.60°C.90°D.120°
B

试题分析:如图,
∵双曲线Γ:(a>0,b>0)的离心率e=2,
过双曲线Γ的左焦点F作⊙O:的两条切线,切点分别为A、B,
∴OA=OB=a,OF=c,,OA⊥AF,
∴∠AFB=2∠AFO=2×30°=60°.
故选B.
点评:本题主要考查了双曲线的简单性质.解题的过程中采用了数形结合的思想,使问题的解决更直观.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


已知椭圆:的一个焦点为且过点.

(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1A2P是椭圆上异于A1A2的任一点,直线PA1PA2分别交轴于点NM,若直线OT与过点MN的圆G相切,切点为T
证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线p>0)的准线与圆相切,则p的值为(    )
A.10B.6 C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为,且两条曲线在第一象限的交点为是以为底边的等腰三角形,若,椭圆与双曲线的离心率分别为,则的取值范围是(   )
A.(1,B.()  C.(D.(,+

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线的左焦点,作倾斜角为的直线FE交该双曲线右支于点P,若,且则双曲线的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线,的焦点为F,直线与抛物线C交于AB两点,则(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是双曲线上一点,是其左、右焦点,的三边长成等差数列,且,则双曲线的离心率等于
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

平面直角坐标系和极坐标系的原点与极点重合,轴的正半轴与极轴重合,单位长度相同。已知曲线的极坐标方程为,曲线的参数方程为,射线与曲线交于极点以外的三点A,B,C.
(1)求证:
(2)当时,B,C两点在曲线上,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点为,抛物线C:以F2为焦点且与椭圆相交于点,点轴上方,直线与抛物线相切.
(1)求抛物线的方程和点的坐标;
(2)设A,B是抛物线C上两动点,如果直线轴分别交于点. 是以,为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.

查看答案和解析>>

同步练习册答案