精英家教网 > 高中数学 > 题目详情
设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B=(  )
分析:找出A和B解集中的公共部分,即可确定出两集合的交集.
解答:解:∵A={x|-1≤x≤2},B={x|0≤x≤4},
∴A∩B={x|0≤x≤2}.
故选A
点评:此题考查了交集及其运算,比较简单,是一道基本题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|1+log2|x|≤0},B={x|
1
4
≤x≤2},则A∩(CRB)=(  )
A、[-
1
2
1
4
]
B、[-
1
2
,0)∪(0,
1
4
C、(-∞,-
1
2
]∪(
1
4
,+∞)
D、[-
1
2
,0)∪(
1
4
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|1-a≤x≤1+a},集合B={x|x<-1或x>5},分别就下列条件求实数a的取值范围:
(Ⅰ)集合A为空集;
(Ⅱ)A∩B=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|1<x<4},B={x|x2-2x-3≤0},则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|1≤x≤2},B={x|x≥a},若A⊆B,则a的范围是
a≤1
a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|1<x<3},B={x|x<-1或x>2},则A∩B为(  )

查看答案和解析>>

同步练习册答案