【题目】已知f(x)为二次函数,且f(x+1)+f(x﹣1)=2x2﹣4x,
(1)求f(x)的解析式;
(2)设g(x)=f(2x)﹣m2x+1,其中x∈[0,1],m为常数且m∈R,求函数g(x)的最小值.
【答案】(1)f(x)=x2﹣2x﹣1(2)
【解析】
(1)因为函数f(x)为二次函数,所以可设函数的解析式为f(x)=ax2+bx+c,且 ,利用条件求系数即可;(2)根据(1)所求的二次函数的解析式可写出函数g(x)=f(2x)﹣m2x+1的解析式,整理可得,,令t=2x,可构造关于t的二次函数,进而可求其最小值。
解:(1)设f(x)=ax2+bx+c,且 。
因为f(x+1)+f(x﹣1)=2x2﹣4x,
所以a(x+1)2+b(x+1)+c+a(x﹣1)2+b(x﹣1)+c=2x2﹣4x,所以2ax2+2bx+2a+2c=2x2﹣4x
故有,即a=1,b=﹣2,c=﹣1,所以f(x)=x2﹣2x﹣1;
(2)g(x)=f(2x)﹣m2x+1= ,
设t=2x,t∈[1,2],
∴g(t)=t2﹣(2m+2)t﹣1=[t﹣(m+1)]2﹣(m2+2m+2),
①当m+1>2,即m>1时,g(t)=t2﹣(2m+2) t﹣1在[1,2]减函数,当t=2时,g(t)min=﹣4m﹣1,
②当m+1<1,即m<0时,g(t)=t2﹣(2m+2)t﹣1在[1,2]增函数,当t=1时,g(t)min=﹣2m﹣2,
③当0≤m≤1时,当t=m+1时,g(t)min=﹣(m2+2m+2),
综上所述:g(x)min=.
科目:高中数学 来源: 题型:
【题目】已知二次函数的图象是以原点为顶点且过点的抛物线,反比例函数的图象(双曲线)与直线的两个交点间的距离为8,.
(1)求函数的表达式;
(2)当时,讨论函数的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数.
(1)若是的两个不同的根,是否存在实数,使成立?若存在,求的值;若不存在,请说明理由.
(2)设,函数已知方程恰有3个不同的根.
(ⅰ)求的取值范围;
(ⅱ)设分别是这3个根中的最小值与最大值,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,边长为4的正方形与矩形所在平面互相垂直,分别为的中点,.
(1)求证:平面;
(2)求证:平面;
(3)在线段上是否存在一点,使得?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(n∈N*)
(Ⅰ)证明当n≥2时,数列{nan}是等比数列,并求数列{an}的通项an;
(Ⅱ)求数列{n2an}的前n项和Tn;
(Ⅲ)对任意n∈N*,使得 恒成立,求实数λ的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若从装有个红球和个黑球的口袋内任取个球,则下列为互斥的两个事件是( )
A.“至少有一个黑球”与“都是黑球”B.“一个红球也没有”与“都是黑球”
C.“至少有一个红球”与“都是红球”D.“恰有个黑球”与“恰有个黑球”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两家外卖公司,其“骑手”的日工资方案如下:甲公司规定底薪70元,每单抽成1元;乙公司规定底薪100元,每日前45单无抽成,超出45单的部分每单抽成6元.
假设同一公司的“骑手”一日送餐单数相同,现从两家公司各随机抽取一名“骑手”并记录其100天的送餐单数,得到如下条形图:
(Ⅰ)求乙公司的“骑手”一日工资y(单位:元)与送餐单数n(n∈N﹡)的函数关系;
(Ⅱ)若将频率视为概率,回答以下问题:
(i)记乙公司的“骑手”日工资为X(单位:元),求X的分布列和数学期望;
(ⅱ)小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日工资的角度考虑,请你利用所学的统计学知识为他做出选择,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com