精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)为二次函数,且f(x+1)+f(x﹣1)=2x2﹣4x,

(1)求f(x)的解析式;

(2)设g(x)=f(2x)﹣m2x+1,其中x[0,1],m为常数且mR,求函数g(x)的最小值.

【答案】(1)f(x)=x2﹣2x﹣1(2)

【解析】

(1)因为函数f(x)为二次函数,所以可设函数的解析式为fx=ax2+bx+c,且 ,利用条件求系数即可;(2)根据(1)所求的二次函数的解析式可写出函数g(x)=f(2x)﹣m2x+1的解析式,整理可得,,令t=2x可构造关于t的二次函数进而可求其最小值

解:(1)设fx=ax2+bx+c,且

因为f(x+1)+f(x﹣1)=2x2﹣4x,

所以a(x+1)2+b(x+1)+c+a(x﹣1)2+b(x﹣1)+c=2x2﹣4x,所以2ax2+2bx+2a+2c=2x2﹣4x

故有,即a=1,b=﹣2,c=﹣1,所以f(x)=x2﹣2x﹣1;

2gx=f2x)﹣m2x+1=

t=2x,t[1,2],

g(t)=t2﹣(2m+2)t﹣1=[t﹣(m+1)]2﹣(m2+2m+2),

①当m+1>2,即m>1时,g(t)=t2﹣(2m+2) t﹣1[1,2]减函数,当t=2时,g(t)min=﹣4m﹣1,

②当m+1<1,即m<0时,g(t)=t2﹣(2m+2)t﹣1[1,2]增函数,当t=1时,g(t)min=﹣2m﹣2,

③当0≤m≤1时,当t=m+1时,g(t)min=﹣(m2+2m+2),

综上所述:gxmin=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象是以原点为顶点且过点的抛物线,反比例函数的图象(双曲线)与直线的两个交点间的距离为8.

1)求函数的表达式;

2)当时,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数.

1)若的两个不同的根,是否存在实数,使成立?若存在,求的值;若不存在,请说明理由.

2)设,函数已知方程恰有3个不同的根.

)求的取值范围;

)设分别是这3个根中的最小值与最大值,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1,,求:

(1)所成角;

(2)求点B到与平面的距离

(3)平面与平面所成的二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为4的正方形与矩形所在平面互相垂直,分别为的中点,

1)求证:平面

2)求证:平面

(3)在线段上是否存在一点,使得?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为.

1)若是单调函数,且有零点,求实数a的取值范围;

2)若,求的值域;

3)若恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(nN*

Ⅰ)证明当n≥2时,数列{nan}是等比数列,并求数列{an}的通项an

Ⅱ)求数列{n2an}的前n项和Tn

Ⅲ)对任意nN*,使得 恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若从装有个红球和个黑球的口袋内任取个球,则下列为互斥的两个事件是( )

A.“至少有一个黑球”与“都是黑球”B.“一个红球也没有”与“都是黑球”

C.“至少有一个红球”与“都是红球”D.“恰有个黑球”与“恰有个黑球”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家外卖公司,其“骑手”的日工资方案如下:甲公司规定底薪70元,每单抽成1元;乙公司规定底薪100元,每日前45单无抽成,超出45单的部分每单抽成6元.

假设同一公司的“骑手”一日送餐单数相同,现从两家公司各随机抽取一名“骑手”并记录其100天的送餐单数,得到如下条形图:

(Ⅰ)求乙公司的“骑手”一日工资y(单位:元)与送餐单数n(n∈N﹡)的函数关系;

(Ⅱ)若将频率视为概率,回答以下问题:

(i)记乙公司的“骑手”日工资为X(单位:元),求X的分布列和数学期望;

(ⅱ)小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日工资的角度考虑,请你利用所学的统计学知识为他做出选择,并说明理由.

查看答案和解析>>

同步练习册答案