精英家教网 > 高中数学 > 题目详情
若sinx-siny=-,cosx-cosy=,且x、y都是锐角,求tan(x-y)的值.

解:(sinx-siny)2=sin2x-2sinxsiny+sin2y=,①

(cosx-cosy)2=cos2x-2cosxcosy+cos2y=,②

由①+②得cos(x-y)=,

又∵sinx-siny=-<0,

cosx-cosy=>0,x、y为锐角,∴-π<x-y<0.

∴sin(x-y)=-.

∴tan(x-y)==-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、下列有关命题的说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

现有下列命题:
①设a,b为正实数,若a2-b2=1,则a-b<1;
②已知a>2b>0,则a2+
8
b(a-2b)
的最小值为16;
③数列{n(n+4)(
2
3
)n}中的最大项是第4项

④设函数f(x)=
lg|x-1|,x≠1
0,x=1
,则关于x的方程f2(x)+2f(x)=0有4个解.
⑤若sinx+siny=
1
3
,则siny-cos2x的最大值是
4
3

其中的真命题有
①②③
①②③
.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给定下列命题:
①函数y=sin(
π
4
-2x)
的单增区间是[kπ-
π
8
,kπ+
8
](k∈Z)

②已知|
a
|=|
b
|=2,
a
b
的夹角为
π
3
,则
a
+
b
a
上的投影为3;
③函数y=f(x)与y=f-1(x)-1的图象关于直线x-y+1=0对称;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
处取得最小值,则f(
2
-x)=-f(x)

⑤若sinx+siny=
1
3
,则siny-cos2x
的最大值为
4
3

则真命题的序号是
①②③④
①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)下列选项中,说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列命题四个命题:
①函数y=sin(
π
4
-2x)
的单调递增区间是[kπ-
π
8
,kπ+
8
](k∈Z)

②若x是第一象限的角,则y=sinx是增函数;
α,β∈(0,
π
2
)
,且cosα<sinβ,则α+β>
π
2

④若sinx+siny=
1
3
,则siny-cos2x的最大值是
4
3

其中真命题的个数有(  )

查看答案和解析>>

同步练习册答案