精英家教网 > 高中数学 > 题目详情

【题目】2019非洲猪瘟过后,全国生猪价格逐步上涨,某大型养猪企业,欲将达到养殖周期的生猪全部出售,根据去年的销售记录,得到销售生猪的重量的频率分布直方图(如图所示).

1)根据去年生猪重量的频率分布直方图,估计今年生猪出栏(达到养殖周期)时,生猪重量达不到270斤的概率(以频率代替概率);

2)若假设该企业今年达到养殖周期的生猪出栏量为5000头,生猪市场价格是30/斤,试估计该企业本养殖周期的销售收入是多少万元;

3)若从本养殖周期的生猪中,任意选两头生猪,其重量达到270斤及以上的生猪数为随机变量,试求随机变量的分布列及方差.

【答案】12(万元)(3)详见解析

【解析】

1)根据生猪重量的频率分布直方图,即可求得生猪重量达不到270斤的概率.

2)根据频率分布直方图,先求得生猪重量的平均值,即可由总量及单价求得该企业本养殖周期的销售收入.

3)由(1)可得重量达到270斤及以上的概率. 由题意可得随机变量的所有可能取值为,结合二项分布即可求得各自的概率,进而得分布列;再由方差公式即可得解.

1)估计生猪重量达不到270斤的概率为

.

2)生猪重量的平均数为(斤).

所以估计该企业本养殖周期的销售收入是(万元).

3)由(1)可得随机选一头生猪,其重量达到270斤及以上的概率为

由题意可得随机变量的所有可能取值为,则

随机变量的分布列为

Y

0

1

2

P

随机变量的方差.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,圆过椭圆的三个顶点,过点的直线(斜率存在且不为0)与椭圆交于两点.

1)求椭圆的标准方程.

2)证明:在轴上存在定点,使得为定值,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 为两条不同的直线, 为两个不同的平面,对于下列四个命题:

其中正确命题的个数有(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日本数学家角谷静夫发现的“ 猜想”是指:任取一个自然数,如果它是偶数,我们就把它除以,如果它是奇数我们就把它乘再加上,在这样一个变换下,我们就得到了一个新的自然数。如果反复使用这个变换,我们就会得到一串自然数,猜想就是:反复进行上述运算后,最后结果为,现根据此猜想设计一个程序框图如图所示,执行该程序框图输入的,则输出值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的个数是(

①直线上有两个点到平面的距离相等,则这条直线和这个平面平行;

为异面直线,则过且与平行的平面有且仅有一个;

③直四棱柱是直平行六面体;

④两相邻侧面所成角相等的棱锥是正棱锥.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若关于的方程有两个不同实数根,的取值范围;

(2)若关于的不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆.

1)求过点的圆的切线方程;

2)若直线过点且被圆C截得的弦长为,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车尾气中含有一氧化碳(),碳氢化合物()等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废.某环保组织为了解公众对机动车强制报废标准的了解情况,随机调查了100人,所得数据制成如下列联表:

不了解

了解

总计

女性

50

男性

15

35

50

总计

100

(1)若从这100人中任选1人,选到了解机动车强制报废标准的人的概率为,问是否有的把握认为“对机动车强制报废标准是否了解与性别有关”?

(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中浓度的数据,并制成如图所示的折线图,若该型号汽车的使用年限不超过15年,可近似认为排放的尾气中浓度与使用年限线性相关,试确定关于的回归方程,并预测该型号的汽车使用12年排放尾气中的浓度是使用4年的多少倍.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:用最小二乘法求线性回归方程系数公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,当时,的极大值为;当时,有极小值。求:

1的值;

2)函数的极小值。

查看答案和解析>>

同步练习册答案