【题目】已知,是平面,,是直线,给出下列命题:
①若,,则;
②若,,,,则;
③如果,,,是异面直线,则与相交;
④若.,且,,则,且
其中正确确命题的序号是_____(把正确命题的序号都填上)
科目:高中数学 来源: 题型:
【题目】从参加某次高中英语竞赛的学生中抽出100名,将其成绩整理后,绘制频率分布直方图(如图所示).其中样本数据分组区间为: , , , , , .
(Ⅰ)试求图中的值,并计算区间上的样本数据的频率和频数;
(Ⅱ)试估计这次英语竞赛成绩的众数、中位数及平均成绩(结果精确到).
注:同一组数据用该组区间的中点值作为代表
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,且点在椭圆上.
(1)求椭圆的标准方程;
(2)过椭圆上异于其顶点的任意一点作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴, 轴上的截距分别为,证明: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在半径为3的圆形(为圆心)铝皮上截取一块矩形材料,其中点在圆弧上,点在两半径上,现将此矩形铝皮卷成一个以为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱的体积为.
(1)写出体积关于的函数关系式,并指出定义域;
(2)当为何值时,才能使做出的圆柱形罐子体积最大?最大体积是多少?(圆柱体积公式: , 为圆柱的底面积, 为圆柱的高)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:集合,其中
.,称为的第个坐标分量.若,且满足如下两条性质:
①中元素个数不少于个.
②,,,存在,使得,,的第个坐标分量都是.则称为的一个好子集.
()若为的一个好子集,且,,写出,.
()若为的一个好子集,求证:中元素个数不超过.
()若为的一个好子集且中恰好有个元素,求证:一定存在唯一一个,使得中所有元素的第个坐标分量都是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设x,y满足约束条件 ,若目标函数2z=2x+ny(n>0),z的最大值为2,则y=tan(nx+ )的图象向右平移 后的表达式为( )
A.y=tan(2x+ )
B.y=tan(x﹣ )
C.y=tan(2x﹣ )
D.y=tan2x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产的产品的直径均位于区间内(单位: ).若生产一件产品的直径位于区间内该厂可获利分别为10,30,20,10(单位:元),现从该厂生产的产品中随机抽取200件测量它们的直径,得到如图所示的频率分布直方图.
(1)求的值,并估计该厂生产一件产品的平均利润;
(2)现用分层抽样法从直径位于区间内的产品中随机抽取一个容量为5的样本,从样本中随机抽取两件产品进行检测,求两件产品中至多有一件产品的直径位于区间内的槪率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知=(2,1),=(1,7),=(5,1),设Z是直线OP上的一动点.
(1)求使取最小值时的;
(2)对(1)中求出的点Z,求cos∠AZB的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,为坐标原点,已知两点、在轴的正半轴上,点在轴的正半轴上.若,.
()求向量,夹角的正切值.
()问点在什么位置时,向量,夹角最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com