精英家教网 > 高中数学 > 题目详情
13.下列方程表示焦点在x轴上的椭圆是(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1C.$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{4}$=1D.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1

分析 直接利用椭圆的简单性质判断椭圆的方程即可.

解答 解:由题意,A,B选项的方程是双曲线方程,C选项的方程是焦点坐标在y轴上的椭圆,选项D的方程$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,表示焦点在x轴上的椭圆.
故选:D.

点评 本题考查椭圆的简单性质的应用,考查基本知识的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.集合P={x||x|<3,x∈Z},集合Q={y|y=x+1,x∈P},则P∩Q=(  )
A.{-1,-2,0,1}B.{-1,0,1,2}C.{0,1,2,3}D.{-1,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知cos2C=-$\frac{1}{8}$.
(1)求sinC;
(2)当a=$\frac{\sqrt{2}}{3}$c,且b=3$\sqrt{7}$时,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC的面积为S,角A、B、C所对的边分别为a、b、c,且2S=$\sqrt{3}$AB•AC.
(Ⅰ)求角A的大小:
(Ⅱ)若b、c是方程x2-2$\sqrt{3}$x+2=0的两个根.求边a的长度及△ABC的外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在0°~360°范围内,与-30°终边相同的角是(  )
A.30°B.60°C.210°D.330°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若双曲线$\frac{y^2}{8}-\frac{x^2}{4}=1$的其渐近线方程为(  )
A.y=±2xB.$y=±\frac{{\sqrt{2}}}{2}x$C.$y=±\frac{1}{2}x$D.$y=±\sqrt{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.小明同学制作了一个简易的网球发射器,可用于帮忙练习定点接发球,如图1所示,网球场前半区、后半区总长为23.77米,球网的中间部分高度为0.914米,发射器固定安装在后半区离球网底部8米处中轴线上,发射方向与球网底部所在直线垂直.
为计算方便,球场长度和球网中间高度分别按24米和1米计算,发射器和网球大小均忽略不计.如图2所示,以发射器所在位置为坐标原点建立平面直角坐标系xOy,x轴在地平面上的球场中轴线上,y轴垂直于地平面,单位长度为1米,已知若不考虑球网的影响,网球发射后的轨迹在方程y=$\frac{1}{2}$kx-$\frac{1}{80}$(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.发射器的射程是指网球落地点的横坐标.
(Ⅰ)求发射器的最大射程;
(Ⅱ)请计算k在什么范围内,发射器能将球发过网(即网球飞行到球网正上空时,网球离地距离大于1米)?若发射器将网球发过球网后,在网球着地前,小明要想在前半区中轴线的正上空选择一个离地面2.55米处的击球点正好击中网球,试问击球点的横坐标a最大为多少?并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.f(x)为定义在R上的奇函数,当x>0时,f(x)=lnx,则f(x)>0的解集为(  )
A.(1,+∞)B.(0,1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\frac{1}{x^2-x}$+$\sqrt{2-x}$的定义域是(  )
A.(-∞,1)∪(1,2)B.(-∞,0)∪(0,1)∪(1,2)C.(-∞,0)∪(1,2)D.(-∞,0)∪(0,1)∪(1,2]

查看答案和解析>>

同步练习册答案