【题目】设抛物线的焦点为,点是上一点,且线段的中点坐标为.
(1)求抛物线的标准方程;
(2)若,为抛物线上的两个动点(异于点),且,求点的横坐标的取值范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,分别为椭圆C的左、右焦点且.
(1)求椭圆C的方程;
(2)过P点的直线与椭圆C有且只有一个公共点,直线平行于OP(O为原点),且与椭圆C交于两点A、B,与直线交于点M(M介于A、B两点之间).
(i)当面积最大时,求的方程;
(ii)求证:,并判断,的斜率是否可以按某种顺序构成等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形的边长为1,E,F分别是,的中点,交EF于点D,现沿SE,SF及EF把这个正方形折成一个四面体,使,,三点重合,重合后的点记为G,则在四面体中必有( )
A.平面EFG
B.设线段SF的中点为H,则平面SGE
C.四面体的体积为
D.四面体的外接球的表面积为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,且,点在椭圆内部,点在椭圆上,则以下说法正确的是( )
A.的最小值为
B.椭圆的短轴长可能为2
C.椭圆的离心率的取值范围为
D.若,则椭圆的长轴长为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,焦距为.
(1)求的方程;
(2)若斜率为的直线与椭圆交于,两点(点,均在第一象限),为坐标原点.
①证明:直线的斜率依次成等比数列.
②若与关于轴对称,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为彻底打赢脱贫攻坚战,2020年春,某市政府投入资金帮扶某农户种植蔬菜大棚脱贫致富,若该农户计划种植冬瓜和茄子,总面积不超过15亩,帮扶资金不超过4万元,冬瓜每亩产量10 000斤,成本2000元,每斤售价0.5元,茄子每亩产量5000斤,成本3000元,每斤售价1.4元,则该农户种植冬瓜和茄子利润的最大值为( )
A.4万元B.5.5万元C.6.5万元D.10万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某志愿者服务网站在线招募志愿者,当报名人数超过计划招募人数时,将采用随机抽取的方法招募志愿者,如表记录了A,B,C,D四个项目最终的招募情况,其中有两个数据模糊,记为a,b.
甲同学报名参加了这四个志愿者服务项目,记ξ为甲同学最终被招募的项目个数,已知P(ξ=0),P(ξ=4).
(Ⅰ)求甲同学至多获得三个项目招募的概率;
(Ⅱ)求a,b的值;
(Ⅲ)假设有十名报了项目A的志愿者(不包含甲)调整到项目D,试判断Eξ如何变化(结论不要求证明).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com