分析 (1)设x的单位为百海里,由∠OAB=α,求出AB,AD,在△AOD中,求解即可.若小岛O到AB的距离为x,通过$AB=2\sqrt{{1^2}-{x^2}}$,求解OD即可.
(2)通过OD2=4cos2α+1+4cosαsinα;结合角的范围,利用三角函数最值求解即可.
解答 解:设x的单位为百海里
(1)由∠OAB=α,AB=2OAcosA=2cosA,AD=AB=2cosα,…(2分)
在△AOD中,$OD=f(α)=\sqrt{O{A^2}+O{B^2}-2×OA×OBcos(α+\frac{π}{2})}$…(3分)
=$\sqrt{1+4{{cos}^2}α+4cosαsinα}$;$α∈(0,\frac{π}{2})$(定义域1分)…(5分)
若小岛O到AB的距离为x,$AB=2\sqrt{{1^2}-{x^2}}$,…(6分)
$OD=g(x)=\sqrt{{{(x+\frac{AD}{2})}^2}+{{(\frac{AB}{2})}^2}}$…(8分)
=$\sqrt{-{x^2}+2x\sqrt{1-{x^2}}+2}$,x∈(0,1)(定义域1分) …(10分)
(2)OD2=4cos2α+1+4cosαsinα;$α∈(0,\frac{π}{2})$
=$4×\frac{1+cos2α}{2}+1+4×\frac{sin2α}{2}$
=2(sin2α+cos2α)+3
=$2\sqrt{2}sin(2α+\frac{π}{4})+3,α∈(0,\frac{π}{2})$.…(11分)
当$2α+\frac{π}{4}∈(\frac{π}{4},\frac{5π}{4})$,则$2α+\frac{π}{4}=\frac{π}{2}$时,即$α=\frac{π}{8}$,OD取得最大值,…(12分)
此时$AB=2cos\frac{π}{8}=2×\sqrt{\frac{{1+cos\frac{π}{4}}}{2}}=\sqrt{2+\sqrt{2}}$(百海里).…(13分)
答:当AB间距离$100\sqrt{2+\sqrt{2}}$海里时,搜救范围最大.…(14分)
点评 本题考查直线与圆的方程的综合应用,三角函数的最值的求法,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | 5 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{28}{75}$ | B. | $\frac{28}{75}$ | C. | -$\frac{56}{75}$ | D. | $\frac{56}{75}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com