精英家教网 > 高中数学 > 题目详情
已知在三棱锥P-ABC中侧面与底面所成的二面角相等,则P点在平面α内的射影一定是△ABC的(  )
分析:顶点在底面上的射影,以及二面角,构成的三个三角形是全等三角形,推出垂足到三边距离相等,可得结果.
解答:解:侧面与底面所成的二面角都相等,
并且顶点在底面的射影在底面三角形内则底面三条高的垂足、
三棱锥的顶点和顶点在底面的射影这三者构成的3个三角形是全等三角形,
所以顶点在底面的射影到底面三边的距离相等,
所以是内心.
故选A
点评:本题考查棱锥的结构特征,考查逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC的侧棱长为2,底面边长为1,平行四边形EFGH的四个顶点分别在棱AB、BC、CP、PA上,则
1
EF
+
1
FG
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC的底面边长为6,侧棱长为
13
.有一动点M在侧面PAB内,它到顶点P的距离与到底面ABC的距离比为2
2
:1

精英家教网
(1)求动点M到顶点P 的距离与它到边AB的距离之比;
(2)在侧面PAB所在平面内建立为如图所示的直角坐标系,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•梅州一模)已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=1,E,F分别是AB、PD的中点.
(1)求证:AF⊥平面PDC;
(2)求三棱锥B-PEC的体积;
(3)求证:AF∥平面PEC.

查看答案和解析>>

科目:高中数学 来源:2006-2007学年浙江省宁波市八校联考高二(上)数学试卷(解析版) 题型:解答题

已知正三棱锥P-ABC的底面边长为6,侧棱长为.有一动点M在侧面PAB内,它到顶点P的距离与到底面ABC的距离比为

(1)求动点M到顶点P 的距离与它到边AB的距离之比;
(2)在侧面PAB所在平面内建立为如图所示的直角坐标系,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2013年广东省梅州市高考数学一模试卷(文科)(解析版) 题型:解答题

已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=1,E,F分别是AB、PD的中点.
(1)求证:AF⊥平面PDC;
(2)求三棱锥B-PEC的体积;
(3)求证:AF∥平面PEC.

查看答案和解析>>

同步练习册答案