如图,点是椭圆的一个顶点,的长轴是圆的直径,、是过点且互相垂直的两条直线,其中交圆于、两点,交椭圆于另一点.
(1)求椭圆的方程;
(2)求面积的最大值及取得最大值时直线的方程.
(1);当直线的方程为时,的面积取最大值.
解析试题分析:(1)首先根据题中条件求出和的值,进而求出椭圆的方程;(2)先设直线的方程为,先利用弦心距、半径长以及弦长之间满足的关系(勾股定理)求出直线截圆所得的弦长
,然后根据直线与两者所满足的垂直关系设直线,将直线的方程与椭圆的方程联立,求出直线截椭圆的弦长,然后求出的面积的表达式,并利用基本不等式求出的面积的最大值,并求出此时直线的方程.
试题解析:(1)由题意得,
椭圆的方程为;
(2)设、、,
由题意知直线的斜率存在,不妨设其为,则直线的方程为,
故点到直线的距离为,又圆,
,
又,直线的方程为,
由,消去,整理得,
故,代入的方程得
,
设的面积为,则
,
,
当且仅当,即时上式取等号,
当时,的面积取得最大值,
此时直线的方程为
考点:1.椭圆的方程;2.直线与圆、椭圆的位置关系;3.基本不等式
科目:高中数学 来源: 题型:解答题
阅读:
已知、,,求的最小值.
解法如下:,
当且仅当,即时取到等号,
则的最小值为.
应用上述解法,求解下列问题:
(1)已知,,求的最小值;
(2)已知,求函数的最小值;
(3)已知正数、、,,
求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的定义域为. 设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求证:是定值;
(2)判断并说明有最大值还是最小值,并求出此最大值或最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知正方形ABCD,其中顶点A、C坐标分别是 (2,0)、(2,4),点P(x,y)在正方形内部(包括边界)上运动,则的最大值是
A.10 B.8 C.12 D.6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com