精英家教网 > 高中数学 > 题目详情
12.离心率e=$\frac{1}{2}$,一个焦点是F(3,0)的椭圆标准方程为$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{27}=1$.

分析 利用已知条件求出,椭圆的半长轴与半短轴的长,即可得到椭圆的方程.

解答 解:椭圆的离心率e=$\frac{1}{2}$,一个焦点是F(3,0),可得c=3,a=6,b=$\sqrt{{6}^{2}-{3}^{2}}$=$\sqrt{27}$.
椭圆的标准方程为:$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{27}=1$.
故答案为:$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{27}=1$.

点评 本题考查椭圆的简单性质的应用,椭圆方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知a=($\frac{1}{2}$)${\;}^{\frac{2}{3}}$,b=2${\;}^{-\frac{4}{3}}$,c=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,则下列关系式中正确的是(  )
A.c<a<bB.b<a<cC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x+2)的定义域为[-1,2],则f(2x)的定义域为(  )
A.[-1,2]B.[2,16]C.[0,2]D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$f(x)=\left\{{\begin{array}{l}{(a-2)x+1,x<1}\\{{{(\frac{1}{2})}^x}-1,x≥1}\end{array}}\right.$是R上的单调递减函数,则实数a的取值范围是(  )
A.(-∞,2)B.$(-∞,\frac{1}{2}]$C.$[\frac{1}{2},2)$D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若x,y满足约束条件$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,则z=$\frac{y}{x}$的取值范围是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校高二年级有1200人,从中抽取100名学生,对其期中考试语文成绩进行统计分析,得到如图所示的频率分布直方图,其中成绩分组区间是:[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
(Ⅰ)求图中a的值并估计语文成绩的众数;
(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(Ⅲ) 根据频率分布直方图,估计该校这1200名学生中成绩在60分(含60分)以上的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=x-ln|x|的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.“鸡兔同笼”是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”请画出一个解决这个问题的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知定义在R上奇函数f(x)满足f(x+2)=-f(x),且x∈(0,1]时,f(x)=2x,求值:
(1)f(98)=0;
(2)f($\frac{17}{2}$)=$\sqrt{2}$;
(3)f($\frac{100}{3}$)=$\root{3}{4}$;
(4)f(log218)=$\frac{9}{4}$;
(5)f(2015)=-2.

查看答案和解析>>

同步练习册答案