精英家教网 > 高中数学 > 题目详情
4.设F1,F2分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的两个焦点,M,N是双曲线C的一条渐近线上的两点,四边形MF1NF2为矩形,A为双曲线的一个顶点,若△AMN的面积为$\frac{1}{2}{c}^{2}$,则该双曲线的离心率为(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

分析 设M(x,$\frac{b}{a}$x),由题意,|MO|=c,则x=a,∴M(a,b),利用△AMN的面积为$\frac{1}{2}{c}^{2}$,建立方程,即可求出双曲线的离心率.

解答 解:设M(x,$\frac{b}{a}$x),由题意,|MO|=c,则x=a,∴M(a,b),
∵△AMN的面积为$\frac{1}{2}{c}^{2}$,
∴$\frac{1}{2}•a•b=\frac{1}{4}{c}^{2}$,
∴4a2(c2-a2)=c4
∴e4-4e2+4=0,
∴e=$\sqrt{2}$.
故选D.

点评 本题考查双曲线的离心率,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若α∈(0,π),且sin2α+2cos2α=2,则tanα=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.双曲线C:x2-4y2=1的渐近线方程是y=±$\frac{1}{2}$x,双曲线C的离心率是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\sqrt{x}$的反函数是f-1(x),则f-1(4)=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z满足(1+i)z=i(i是虚数单位),则z的虚部为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$iD.-$\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.2016年下半年,锦阳市教体局举行了市教育系统直属单位职工篮球比赛,以增强直属单位间的交流与合作,组织方统计了来自A1,A2,A3,A4,A5等5个直属单位的男子篮球队的平均身高与本次比赛的平均得分,如表所示:
 单位 A1A2  A3A4  A5
 平均身高x(单位:cm) 170 174 176 181 179
 平均得分y62  6466  7068 
(1)根据表中数据,求y关于x的线性回归方程;(系数精确到0.01)
(2)若M队平均身高为185cm,根据(I)中所求得的回归方程,预测M队的平均得分(精确到0.01)
注:回归当初$\widehat{y}=\widehat{b}x+\widehat{a}$中斜率和截距最小二乘估计公式分别为$\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“a=0”是“直线l1:ax+y-1=0与直线l2:x+ay-1=0垂直”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,定义在[-2,2]的偶函数f(x)的图象如图所示,函数g(x)=f(x)-$\frac{1}{4}x+\frac{1}{2}$的零点个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O为圆心的两个同心圆弧和延长后通过点AD的两条线段围成.设圆弧$\widehat{AB}$、$\widehat{CD}$所在圆的半径分别为f(x)、R米,圆心角为θ(弧度).
(1)若θ=$\frac{π}{3}$,r1=3,r2=6,求花坛的面积;
(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD的长度为多少时,花坛的面积最大?

查看答案和解析>>

同步练习册答案