精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的奇函数fx)且满足f1+x=-f3-x),且f1)≠0,若函数gx=x6+f1cos4x-3有且只有唯一的零点,则f2018+f2019=(  )

A. 1 B. C. D. 3

【答案】C

【解析】

根据题意,由f(1+x)=-f(3-x)变形可得f(x)=-f(4-x),由函数的奇偶性可得f(x)=-f(-x),综合可得-f(-x)=-f(4-x),即f(x)=f(x+4),即函数f(x)为周期为4的周期函数,据此可得f(2)=f(-2),且f(-2)=-f(2),分析可得f(2)=-f(-2)=0;对于g(x)=x6+f(1)cos4x-3,由函数奇偶性的定义可得函数g(x)为偶函数,结合函数零点个数分析可得g(0)=f(1)-3=0,则f(1)=3,结合f(x)的周期性可得f(2018)与f(2019)的值,相加即可得答案.

根据题意,函数f(x)且满足f(1+x)=-f(3-x),则有f(x)=-f(4-x),

又由f(x)为奇函数,则有f(x)=-f(-x),

则有-f(-x)=-f(4-x),即f(x)=f(x+4),

即函数f(x)为周期为4的周期函数,

则有f(2)=f(-2),且f(-2)=-f(2),

分析可得f(2)=-f(-2)=0,

对于g(x)=x6+f(1)cos4x-3,

有g(-x)=(-x)6+f(1)cos4(-x)-3=x6+f(1)cos4x-3=g(x),

即函数g(x)为偶函数,

若函数g(x)=x6+f(1)cos4x-3有且只有唯一的零点,

则必有g(0)=f(1)-3=0,则f(1)=3,

f(2018)=f(2+2016)=f(2)=0,

f(2019)=f(3+2016)=f(3)=f(-1)=-f(1)=-3,

则f(2018)+f(2019)=-3;

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角梯形中, 分别为的中点,以为圆心, 为半径的圆交,点在弧上运动(如图).若,其中,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个人有n把钥匙,其中只有一把可以打开房门,他随意的进行试开,若试开过的钥匙放在一边,试开次数X为随机变量,则P(X=k)=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是偶函数的导函数在区间上的唯一零点为2,并且当则使得成立的的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求证:

2)若函数的图象与直线没有交点,求实数的取值范围;

3)若函数,则是否存在实数,使得的最小值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.

车间

A

B

C

数量

50

150

100

(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=xR).

1)证明:当a3时,fx)在R上是减函数;

2)若函数fx)存在两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若为奇函数,求的值;

(2)试判断内的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣4x+a+3,a∈R. (Ⅰ)若函数y=f(x)的图象与x轴无交点,求a的取值范围;
(Ⅱ)若函数y=f(x)在[﹣1,1]上存在零点,求a的取值范围;
(Ⅲ)设函数g(x)=bx+5﹣2b,b∈R.当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围.

查看答案和解析>>

同步练习册答案