精英家教网 > 高中数学 > 题目详情

【题目】(选修4﹣4:坐标系与参数方程)已知曲线C的参数方程是 (φ为参数,a>0),直线l的参数方程是 (t为参数),曲线C与直线l有一个公共点在x轴上,以坐标原点为极点,x轴的正半轴为极轴建立坐标系.
(1)求曲线C普通方程;
(2)若点 在曲线C上,求 的值.

【答案】
(1)解:∵直线l的参数方程是 (t为参数),消去参数t得x+y=2,令y=0,得x=2.

∵曲线C的参数方程是 (φ为参数,a>0),消去参数φ得

把点(2,0)代入上述方程得a=2.

∴曲线C普通方程为


(2)解:∵点 在曲线C上,即A(ρ1cosθ,ρ1sinθ), 在曲线C上,

= = =

= +

=


【解析】(1)消去直线l的参数t得普通方程,令y=0,得x的值,即求得直线与x轴的交点;消去曲线C的参数即得C的普通方程,再把上面求得的点代入此方程即可求出a的值;(2)把点A、B、C的极坐标化为直角坐标,代入曲线C的方程,可得 ,即 = ,同理得出其它,代入即可得出答案.
【考点精析】解答此题的关键在于理解直线的参数方程的相关知识,掌握经过点,倾斜角为的直线的参数方程可表示为为参数),以及对椭圆的参数方程的理解,了解椭圆的参数方程可表示为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点C在椭圆M: =1(a>b>0)上,若点A(﹣a,0),B(0, ),且 =
(1)求椭圆M的离心率;
(2)设椭圆M的焦距为4,P,Q是椭圆M上不同的两点.线段PQ的垂直平分线为直线l,且直线l不与y轴重合.
①若点P(﹣3,0),直线l过点(0,﹣ ),求直线l的方程;
②若直线l过点(0,﹣1),且与x轴的交点为D.求D点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(-x-1)=f(x-1),其图象过点(0,1),且与x轴有唯一交点。

(1)f(x)的解析式;

(2)设函数g(x)=f(x)-(2+a)x,求g(x)[1,2]上的最小值h(a)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,C、D是以AB为直径的圆上两点,AB=2AD=2,AC=BC,F 是AB上一点,且AF=AB,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上,已知,

(1)求证:AD⊥平面BCE;

(2)求三棱锥A﹣CFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数),它与曲线

C:(y-2)2-x2=1交于A、B两点.

(1)求|AB|的长;

(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,设命题p:函数y=ax在R上单调递减,q:函数y=且y>1恒成立,若p∧q为假,p∨q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面4个结论:

直线BE与直线CF共面;②直线BE与直线AF异面

直线EF平面PBC;④平面BCE平面PAD.

其中正确的有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,函数图像上相邻的两个对称中心之间的距离为,且在处取到最小值.

(1)求函数的解析式;

(2)若将函数图象上所有点的横坐标伸长到原来的2(纵坐标不变),再将向左平移个单位,得到函数图象,求函数的单调递增区间。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数),它与曲线

C:(y-2)2-x2=1交于A、B两点.

(1)求|AB|的长;

(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.

查看答案和解析>>

同步练习册答案