精英家教网 > 高中数学 > 题目详情
已知定义在实数集上的函数y=f(x)满足条件:对于任意的x、y∈R, f(x+y)=f(x)+f(y).

(1)求证:f(0)=0;

(2)求证:f(x)是奇函数,试举出两个这样的函数;

(3)若当x>0时,f(x)<0.

①试判断函数f(x)在R上的单调性,并证明之;

②判断函数|f(x)|=a所有可能的解的个数,并求出对应的a的范围.

解析:(1)证明:令x=y=0,f(0)=f(0)+f(0),即f(0)=0.?

(2)证明:令y=-x,则f(0)=f(-x)+f(x),?

即f(-x)=-f(x),故f(x)为奇函数;?

例如:y=-2x,y=3x.?

(3)①任取x1、x2∈R,且x1<x2,则x2-x1>0.?

f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)<0.?

∴f(x2)<f(x1).

∴函数f(x)为(-∞,+∞)上的减函数.?

②显然本题中的函数f(x)在R上单调递减,f(0)=0,所以|f(x)|≥0,判定|f(x)|=a的解的个数也就是判定y=|f(x)|与y=a的图象交点个数.

当a>0时,有两解;?

当a=0时,有一解;?

当a<0时,无解.

答案:(1)令x=y=0,则f(0)=f(0)+f(0).?

(2)令y=-x,则f(0)=f(-x)+f(x),?

即f(-x)=-f(x),?

故f(x)为奇函数.?

例如:y=-2x,y=3x.?

(3)①任取x1<x2,则x2-x1>0,?

f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)<0,?

则f(x2)<f(x1),?

所以该函数f(x)为(-∞,+∞)上的单调减函数.

②当a>0时,有两解;

当a=0时,有一解;

当a<0时,无解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、已知定义在实数集上的函数y=f(x)满足条件:对于任意的实数x,y,f(x+y)=f(x)+f(y),且x>0时,f(x)>0,f(1)=2,
(1)求f(0);f(2);
(2)证明:f(x)是奇函数;
(3)证明:f(x)是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集上的函数y=f(x)满足条件:对任意的x,y∈R,f(x+y)=f(x)+f(y).
(1)求f(0)的值,
(2)求证:f(x)是奇函数,
(3)举出一个符合条件的函数y=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集上的函数fn(x)=xn,(x∈N*),其导函数记为fn′(x),且满足fn′[ax1+(1-a)x2]  =
f2(x2)-f2(x1x2-x1
,其中a,x1,x2为常数,x1≠x2.设函数g(x)=f1(x)+mf2(x)-lnf3(x),(m∈R且m≠0).
(Ⅰ)求实数a的值;
(Ⅱ)若函数g(x)无极值点,其导函数g′(x)有零点,求m的值;
(Ⅲ)求函数g(x)在x∈[0,a]的图象上任一点处的切线斜率k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集上的函数f(x)满足xf(x)为偶函数,f(x+2)=-f(x),(x∈R) 且当1≤x≤3时,f(x)=(2-x)3
(1)求-1≤x≤0时,函数f(x)的解析式.
(2)求f(2008)、f(2008.5)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集上的偶函数y=f(x)在区间(0,+∞)上是增函数,那么y1=f(
π
3
)
y2=f(3x2+1)y3=f(log2
1
4
)
之间的大小关系为(  )

查看答案和解析>>

同步练习册答案