精英家教网 > 高中数学 > 题目详情

【题目】中国诗词大会的播出引发了全民读书热,某学校语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如右图,若规定得分不低于85分的学生得到“诗词达人”的称号,低于85分且不低于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号.根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为(  )

A. 6B. 5C. 4D. 2

【答案】C

【解析】

有茎叶图,找出获得“诗词能手”的称号的学生人数,求得概率,再利用分层抽样求得答案.

由茎叶图可得,低于85分且不低于70分的学生共有16人,

所以获得“诗词能手”的称号的概率为:

所以分层抽样抽选10名学生,获得“诗词能手”称号的人数为:

故选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知p:方程x2+(m2-6m)y2=1表示双曲线,q:函数f(x)=x3-mx2+(2m+3)x在(-∞,+∞)上是单调增函数.

(1)若p是真命题,求实数m的取值范围;

(2)若p或q是真命题,p且q是假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了考核甲,乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:

1)分别估计该市的市民对甲,乙两部门评分的中位数;

2)分别估计该市的市民对甲,乙两部门的评分高于90的概率;

3)根据茎叶图分析该市的市民对甲,乙两部门的评价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某地村庄P与村庄O的距离为千米,从村庄O出发有两条道路,经测量,的夹角为,OP与的夹角满足(其中),现要经过P修一条直路分别与道路交汇于两点,并在处设立公共设施.

(1)已知修建道路的单位造价分别为2m元/千米和m元/千米,若两段道路的总造价相等,求此时点之间的距离;

(2)考虑环境因素,需要对段道路进行翻修,段的翻修单价分别为n元/千米和元/千米,要使两段道路的翻修总价最少,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,为边的中点,将沿直线翻转为.若为线段的中点,则在翻转过程中,有下列命题:

是定值;

②点在圆上运动;

③一定存在某个位置,使

④若平面,则平面

其中正确的个数为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,分别是的中点.

(1)求异面直线所成角的大小;

(2)棱上是否存在点,使平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】流行性感冒多由病毒引起,据调查,空气相对湿度过大或过小时,都有利于一些病毒的繁殖和传播.科学测定,当空气相对湿度大于65%或小于40%时,病毒繁殖滋生较快,当空气相对湿度在45%—55%时,病毒死亡较快,现随机抽取了全国部分城市,获得了它们的空气月平均相对湿度共300个数据,整理得到数据分组及频数分布表,其中为了记录方便,将空气相对湿度在%~%时记为区间

(I)求上述数据中空气相对湿度使病毒死亡较快的频率;

(Ⅱ)从区间[ 15,35)的数据中任取两个数据,求恰有一个数据位于[25,35)的概率;

(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中空气月平均相对湿度的平均数在第几组(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ( 为自然对数的底数).

(Ⅰ)求函数的极值;

(Ⅱ)当时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列同时满足条件:①存在互异的使得为常数);

②当时,对任意都有,则称数列为双底数列.

(1)判断以下数列是否为双底数列(只需写出结论不必证明);

; ②; ③

(2)设若数列是双底数列,求实数的值以及数列的前项和

(3)设,是否存在整数,使得数列为双底数列?若存在,求出所有的的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案