精英家教网 > 高中数学 > 题目详情

已知f(x)=cosx-cos(x+数学公式).
(1)求函数f(x)在区间,[数学公式数学公式]上的最小值和最大值;
(2)在△ABC中,a,b,c分别是角A,B,C所对的边,且f(A)=1,△ABC的面积为S=6数学公式,b=4,求a的值.

解:(1)f(x)=cosx-cos(x+)=+=sin(x+).(2分)
因为≤x≤,∴≤x+≤sin(x+)≤1.(5分)
所以f(x)在区间[]上的最小值为,最大值为1.(6分)
(2)因为f(A)=1,所以 sin(A+)=1,因为 0<A<π,所以A=.(8分)
由△ABC的面积为S=6=,解得c=6.(10分)
∵b=4,
∴a==2. (12分)
分析:(1)利用三角函数的恒等变换化简f(x)的解析式为 sin(x+),根据≤x≤≤x+,求出f(x)在区间[]上的最值.
(2)由f(A)=1求得A=,根据S=6 求出c=6,再利用余弦定理求出a的值.
点评:本题主要考查三角函数的恒等变换及化简求值,正弦函数的定义域和值域,余弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知 f(x)=cos(
π
2
-x)+
3
sin(
π
2
+x) (x∈R).
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值,并指出此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=cos(2x-φ)(0<φ<π)的图象关于直线x=
π8
对称,则φ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)=
cosπx,x<1
f(x-1)-1,x>1
,求f(
1
3
)+f(
4
3
)的值.
(2)已知角α的终边过点P(-4m,3m),(m≠0),求2sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
cosπx,x<1
f(x-1)-1,x>1
,则f(
1
3
)+f(
7
3
)
的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•河东区一模)已知f(x)=cos(x+φ)-sin(x+φ)为偶函数,则φ可以取的一个值为(  )

查看答案和解析>>

同步练习册答案