ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒ£¨t-1£©Sn=2tan-t-1£¨ÆäÖÐtΪ³£Êý£¬t£¾0£¬ÇÒt¡Ù1£©£®
£¨I£©ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ±ÈÊýÁУ»
£¨II£©ÈôÊýÁÐ{an}µÄ¹«±Èq=f£¨t£©£¬ÊýÁÐ{bn}Âú×ãb1=a1£¬bn+1=Êýѧ¹«Ê½f£¨bn£©£¬ÇóÊýÁÐ{Êýѧ¹«Ê½}µÄͨÏʽ£»
£¨III£©Éèt=Êýѧ¹«Ê½£¬¶Ô£¨II£©ÖеÄÊýÁÐ{an}£¬ÔÚÊýÁÐ{an}µÄÈÎÒâÏàÁÚÁ½ÏîakÓëak+1Ö®¼ä²åÈëk¸öÊýѧ¹«Ê½£¨k¡ÊN*£©ºó£¬µÃµ½Ò»¸öеÄÊýÁУºa1£¬Êýѧ¹«Ê½£¬a2£¬Êýѧ¹«Ê½£¬Êýѧ¹«Ê½£¬a3£¬Êýѧ¹«Ê½£¬Êýѧ¹«Ê½£¬Êýѧ¹«Ê½£¬a4¡­£¬¼Ç´ËÊýÁÐΪ{cn}£®ÇóÊýÁÐ{cn}µÄÇ°50ÏîÖ®ºÍ£®

£¨¢ñ£©Ö¤Ã÷£ºÓÉÌâÉèÖª£¨t-1£©S1=2ta1-t-1£¬½âµÃa1=1£¬
ÓÉ£¨t-1£©Sn=2tan-t-1£¬µÃ£¨t-1£©Sn+1=2tan+1-t-1£¬
Á½Ê½Ïà¼õµÃ£¨t-1£©an+1=2tan+1-2tan£¬
¡à£¨³£Êý£©£®
¡àÊýÁÐ{an}ÊÇÒÔ1ΪÊ×ÏΪ¹«±ÈµÄµÈ±ÈÊýÁУ®¡­£¨4·Ö£©
£¨¢ò£©½â£º¡ßq=f £¨t£©=£¬b1=a1=1£¬bn+1=f £¨bn£©=£¬
¡à=+1£¬
¡àÊýÁÐ{}ÊÇÒÔ1ΪÊ×Ï1Ϊ¹«²îµÄµÈ²îÊýÁУ¬
¡à£®¡­£¨8·Ö£©
£¨III£©½â£ºµ±t=ʱ£¬ÓÉ£¨I£©Öªan=£¬ÓÚÊÇÊýÁÐ{cn}Ϊ£º1£¬-1£¬£¬2£¬2£¬£¬-3£¬-3£¬-3£¬£¬¡­
ÉèÊýÁÐ{an}µÄµÚkÏîÊÇÊýÁÐ{cn}µÄµÚmkÏ¼´ak=£¬
µ±k¡Ý2ʱ£¬mk=k+[1+2+3+¡­+£¨k-1£©]=£¬
¡àm9=-45£®
ÉèSn±íʾÊýÁÐ{cn}µÄÇ°nÏîºÍ£¬ÔòS45=[1+++¡­+]+[-1+£¨-1£©2¡Á2¡Á2+£¨-1£©3¡Á3¡Á3+¡­+£¨-1£©8¡Á8¡Á8]£®
¡ß1+++¡­+==2-£¬
-1+£¨-1£©2¡Á2¡Á2+£¨-1£©3¡Á3¡Á3+¡­+£¨-1£©8¡Á8¡Á8=-1+22-32+42-52+62-72+82
=£¨2+1£©£¨2-1£©+£¨4+3£©£¨4-3£©+£¨6+5£©£¨6-5£©+£¨8+7£©£¨8-7£©=3+7+11+15=36£®
¡àS45=2-+36=38-£®
¡àS50=S45+£¨c46+c47+c48+c49+c50£©=38-+5¡Á£¨-1£©9¡Á9=-7£®
¼´ÊýÁÐ{cn}µÄÇ°50ÏîÖ®ºÍΪ-7£®¡­£¨12·Ö£©
·ÖÎö£º£¨¢ñ£©ÀûÓÃÊýÁеÝÍÆʽ£¬ÔÙдһʽ£¬Á½Ê½Ïà¼õ£¬¼´¿ÉÖ¤µÃÊýÁÐ{an}ÊÇÒÔ1ΪÊ×ÏΪ¹«±ÈµÄµÈ±ÈÊýÁУ»
£¨¢ò£©È·¶¨ÊýÁÐ{}ÊÇÒÔ1ΪÊ×Ï1Ϊ¹«²îµÄµÈ²îÊýÁУ¬¿ÉÇóÊýÁÐ{}µÄͨÏʽ£»
£¨III£©È·¶¨ÊýÁÐ{cn}Ϊ£º1£¬-1£¬£¬2£¬2£¬£¬-3£¬-3£¬-3£¬£¬¡­£¬ÔÙ·Ö×éÇóºÍ£¬¼´¿ÉÇóµÃÊýÁÐ{cn}µÄÇ°50ÏîÖ®ºÍ£®
µãÆÀ£º±¾Ì⿼²éµÈ±ÈÊýÁÐÓëµÈ²îÊýÁеÄÖ¤Ã÷£¬¿¼²éÊýÁеÄͨÏîÓëÇóºÍ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄÇ°nÏîµÄºÍΪSn£¬ÇÒSn=3n+1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=an£¨2n-1£©£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîµÄºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐanµÄÇ°nÏîµÄºÍΪSn£¬a1=
3
2
£¬Sn=2an+1-3
£®
£¨1£©Çóa2£¬a3£»
£¨2£©ÇóÊýÁÐanµÄͨÏʽ£»
£¨3£©Éèbn=(2log
3
2
an+1)•an
£¬ÇóÊýÁÐbnµÄÇ°nÏîµÄºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄÇ°nÏîºÍSn=2an+
3
2
¡Á£¨-1£©n-
1
2
£¬n¡ÊN*£®
£¨¢ñ£©ÇóanºÍan-1µÄ¹Øϵʽ£»
£¨¢ò£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©Ö¤Ã÷£º
1
S1
+
1
S2
+¡­+
1
Sn
£¼
10
9
£¬n¡ÊN*£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

²»µÈʽ×é
x¡Ý0
y¡Ý0
nx+y¡Ü4n
Ëù±íʾµÄƽÃæÇøÓòΪDn£¬ÈôDnÄÚµÄÕûµã£¨Õûµã¼´ºá×ø±êºÍ×Ý×ø±ê¾ùΪÕûÊýµÄµã£©¸öÊýΪan£¨n¡ÊN*£©
£¨1£©Ð´³öan+1ÓëanµÄ¹Øϵ£¨Ö»Ðè¸ø³ö½á¹û£¬²»ÐèÒª¹ý³Ì£©£¬
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÉèÊýÁÐanµÄÇ°nÏîºÍΪSnÇÒTn=
Sn
5•2n
£¬Èô¶ÔÒ»ÇеÄÕýÕûÊýn£¬×ÜÓÐTn¡Üm³ÉÁ¢£¬ÇómµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ö£ÖÝһģ£©ÉèÊýÁÐ{an}µÄÇ°nÏîºÍSn=2n-1£¬Ôò
S4
a3
µÄֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸