精英家教网 > 高中数学 > 题目详情

【题目】对于双曲线),若点满足,则称的外部;若点满足,则称的内部.

1)若直线上点都在的外部,求的取值范围;

2)若过点,圆)在内部及上的点构成的圆弧长等于该圆周长的一半,求满足的关系式及的取值范围;

3)若曲线)上的点都在的外部,求的取值范围.

【答案】1;(2;(3.

【解析】

1)直线上点都在的外部等价于不等式的解为一切实数,转化为恒成立问题从而求解;

2)根据对称性,只需要考虑这两个曲线在第一象限及轴正半轴的情况,由此可得两曲线的交点坐标为,将点代入双曲线得到两个方程,然后将看成已知数,解出,根据,解出的范围;

3)先将曲线)转化为,根据所有点都在的外部,可以得到不等式对任意非零实数均成立,令,转化为函数进行分类讨论,求解最值,从而得出的取值范围.

解:(1)由题意,因为直线上点都在的外部,

所以直线上点满足

即求不等式的解为一切实数时的取值范围.

对于不等式

时,不等式的解集不为一切实数,

于是有解得.

的取值范围为.

2)因为圆和双曲线均关于坐标轴和原点对称,

所以只需考虑这两个曲线在第一象限及轴正半轴的情况.

由题设,圆与双曲线的交点平分该圆在第一象限内的圆弧,

它们交点的坐标为.

代入双曲线方程,

*),

又因为过点

所以

代入(*)式,

.

解得.

因此,的取值范围为.

3)由

.

代入

因为曲线)上的点都在的外部,

所以不等式对任意非零实数均成立,

其中.

,设,(.

时,函数上单调递增,不恒成立;

时,

函数的最大值为

因为,所以

时,.

综上,,解得.

因此,的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某饼屋进行为期天的五周年店庆活动,现策划两项有奖促销活动,活动一:店庆期间每位顾客一次性消费满元,可得元代金券一张;活动二:活动期间每位顾客每天有一次机会获得一个一元或两元红包.根据前一年该店的销售情况,统计了位顾客一次性消费的金额数(元),频数分布表如下图所示:

一次性消费金额数

人数

以这位顾客一次消费金额数的频率分布代替每位顾客一次消费金额数的概率分布.

1)预计该店每天的客流量为人次,求这次店庆期间,商家每天送出代金券金额数的期望;

2)假设顾客获得一元或两元红包的可能性相等,商家在店庆活动结束后会公布幸运数字,连续元的店庆幸运红包一个.若公布的幸运数字是,求店庆期间一位连续天消费的顾客获得红包金额总数的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;

(Ⅱ)若直线经过曲线的焦点且与曲线相交于两点,设线段的中点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.设数列的前n项和为且满足

1)求数列的通项公式;

2)若求正整数的值;

3)是否存在正整数,使得恰好为数列的一项?若存在,求出所有满足条件的正整数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(理)已知数列满足),首项

1)求数列的通项公式;

2)求数列的前项和

3)数列满足,记数列的前项和为ABC的内角,若对于任意恒成立,求角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线是双曲线的一条渐近线,点在双曲线C上,设坐标原点为O.

1)求双曲线C的方程;

2)若过点的直线l与双曲线C交于RS两点,若,求直线l的方程;

3)设在双曲线上,且直线AMy轴相交于点P,点M关于y轴对称的点为N,直线ANy轴相交于点Q,问:在x轴上是否存在定点T,使得?若存在,求出点T的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若存在两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,若对任意正整数n,总存在正整数m,使得,则称是“H数列”;

(1)若数列的前n项和(),判断数列是否是“H数列”?若是,给出证明;若不是,说明理由;

(2)设数列是常数列,证明:为“H数列”的充要条件是;

(3)设是等差数列,其首项,公差,若是“H数列”,求d的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1是函数数的导函数,记,若在区间上为单调函数,求实数a的取值范围;

(2)设实数,求证:对任意实数,总有成立.

附:简单复合函数求导法则为.

查看答案和解析>>

同步练习册答案