精英家教网 > 高中数学 > 题目详情
3.某校高一、高二和高三年级分别有学生1000名、800名、700名,现运用分层抽样的方法从中抽取容量为100的样本,则抽出的高二年级的学生人数为32.

分析 先求出每个个体被抽到的概率,用高三年级的人数乘以每个个体被抽到的概率,即得高三年级应抽取人数.

解答 解:每个个体被抽到的概率等于$\frac{100}{700+800+1000}$=$\frac{1}{25}$,
由于高二年级有1000人,故高三年级应抽取的人数为 800×$\frac{1}{25}$=32,
故答案为:32.

点评 本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.化简:logab•logbc•logca.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知M=$[\begin{array}{l}{1}&{-2}\\{-2}&{1}\end{array}]$,α=$[\begin{array}{l}{3}\\{1}\end{array}]$,试计算M5α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,平面SAB⊥底面ABCD,且SA=SB=$\sqrt{2}$,AD=1,AB=2,BC=3.
(1)求证:SB⊥平面SAD;
(2)求二面角D-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设定义在R上的函数f(x)的导函数为f′(x),当x>0时f′(x)>1,f($\frac{π}{6}$)=$\frac{1}{2}$,且f(x)-f(-x)=2sinx,则不等式2f(x-$\frac{π}{3}$)≤sinx-$\sqrt{3}$cosx的解集为[$\frac{π}{6}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图1,已知四边形BCDE为直角梯形,∠B=90°,BE∥CD,且BE=2CD=2BC=2,A为BE的中点.将△EDA沿AD折到△PDA位置(如图2),连结PC,PB构成一个四棱锥P-ABCD.

(Ⅰ)求证AD⊥PB;
(Ⅱ)若PA⊥平面ABCD.
①求二面角B-PC-D的大小;
②在棱PC上存在点M,满足$\overrightarrow{PM}$=λ$\overrightarrow{PC}$(0≤λ≤1),使得直线AM与平面PBC所成的角为45°,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知直角梯形ACEF与等腰梯形ABCD所在的平面互相垂直,EF∥AC,EF═$\frac{1}{2}$AC,EC⊥AC,AD=DC=CB=CE=$\frac{1}{2}$AB=1.
(Ⅰ)证明:BC⊥AE;
(Ⅱ)求二面角D-BE-F的余弦值;
(Ⅲ)判断直线DF与平面BCE的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.化简$\frac{sin(2π-θ)cos(π+θ)cos(\frac{π}{2}+θ)cos(\frac{11π}{2}-θ)}{cos(π-θ)sin(3π-θ)sin(-π-θ)sin(\frac{9π}{2}+θ)}$的值是(  )
A.-tanθB.tanθC.-cosθD.sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a<b<0,则下列不等式不成立的是(  )
A.$\frac{1}{a}>\frac{1}{b}$B.2a>2bC.|a|>|b|D.a3<b3

查看答案和解析>>

同步练习册答案