【题目】已知函数f(x)=|3x﹣a|+|3x﹣6|,g(x)=|x﹣2|+1.
(Ⅰ)a=1时,解不等式f(x)≥8;
(Ⅱ)若对任意x1∈R都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.
【答案】解:(Ⅰ)a=1时,f(x)=|3x﹣1|+|3x﹣6|,
当x≤ 时,不等式为:7﹣6x≥8,解得x≤﹣ ,∴x≤﹣ ,
当 <x<2时,不等式为:5≥8,无解,
当x≥2时,不等式为6x﹣7≥8,解得x≥ ,∴x≥ ,
综上,f(x)≥8的解集是(﹣∞,﹣ ]∪[ ,+∞).
(Ⅱ)∵对任意x1∈R都有x2∈R,使得f(x1)=g(x2)成立,
∴fmin(x)≥gmin(x),
∵f(x)=|3x﹣a|+|3x﹣6|≥|3x﹣a﹣(3x﹣6)|=|6﹣a|,g(x)=|x﹣2|+1≥1,
∴|6﹣a|≥1,
解得a≥7,或a≤5
【解析】(I)讨论x的范围,去绝对值符号解出不等式;(II)分别求出f(x),g(x)的最小值,令fmin(x)≥gmin(x)解出a的范围.
【考点精析】本题主要考查了绝对值不等式的解法的相关知识点,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+2|﹣2|x+1|.
(1)求f(x)的最大值;
(2)若存在x∈[﹣2,1]使不等式a+1>f(x)成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车进驻城市,绿色出行引领时尚,某市有统计数据显示,2016年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示,若将共享单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”,已知在“经常使用单车用户”中有 是“年轻人”.
(Ⅰ)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列2×2列联表,并根据列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?
使用共享单车情况与年龄列联表
年轻人 | 非年轻人 | 合计 | |
经常使用共享单车用户 | 120 | ||
不常使用共享单车用户 | 80 | ||
合计 | 160 | 40 | 200 |
(Ⅱ)将频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量X,求X的分布列与期望.
(参考数据:
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
其中,K2= ,n=a+b+c+d)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线E: ﹣ =1(a>0,b>0)的左、右焦点分别为F1、F2 , |F1F2|=6,P是E右支上一点,PF1与y轴交于点A,△PAF2的内切圆在边AF2上的切点为Q,若|AQ|= ,则E的离心率是( )
A.2
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,曲线C的极坐标方程为
(1)求曲线C的直角坐标方程;
(2)设直线A与曲线C相交于A,B两点,已知定点P( ,0),当α= 时,求|PA|+|PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a,b是不相等的两个正数,且blna﹣alnb=a﹣b,给出下列结论:①a+b﹣ab>1;②a+b>2;③ + >2.其中所有正确结论的序号是( )
A.①②
B.①③
C.②③
D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足:a1=2,且a1 , a2 , a3成等比数列.
(1)求数列{an}的通顶公式.
(2)记Sn为数列{an}的前n项和,是否存在正整数n.使得Sn>60n+800?若存在,求n的最小值:若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com