精英家教网 > 高中数学 > 题目详情
12.若圆锥的主视图是一个边长为2的等边三角形,则该圆锥的体积为$\frac{\sqrt{3}}{3}π$.

分析 由题意画出图形,求出圆锥的底面半径和高,代入体积公式得答案.

解答 解:如图,
圆锥的底面半径为1,母线长为2,则高PO=$\sqrt{3}$,
∴该圆锥的体积为V=$\frac{1}{3}×π×{1}^{2}×\sqrt{3}=\frac{\sqrt{3}}{3}π$.
故答案为:$\frac{\sqrt{3}}{3}π$.

点评 本题考查旋转体的体积,由题意画出图形是关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在△ABC中,点E.F分别在边AB,AC上,且AE=2EB,AF=$\frac{1}{2}$FC,BF,CE交于点P,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AP}$;
(2)求$\frac{CP}{PE}$的值;
(3)若S△ABC=1,求S△ABP

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.两条平行直线x+2ay=2a+2与x+2y=a+1之间的距离为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点P在椭圆C:2x2+y2=4上,则P到M(1,0)的距离的最大值为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$是空间中不共面的三个向量,且$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{3}}$,$\overrightarrow{c}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{d}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$+3$\overrightarrow{{e}_{3}}$,$\overrightarrow{d}$=$α\overrightarrow{a}$+$β\overrightarrow{b}$+$γ\overrightarrow{c}$,则α+β+γ等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知平面向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),α,β∈R,当α=$\frac{5π}{12}$,β=$\frac{π}{12}$时,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\frac{1}{3}$ax3+ax2-3ax+1的图象经过四个象限,则实数a的取值范围为(-∞,-$\frac{1}{9}$)∪($\frac{3}{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=(a-lnx)x-1.
(I)不等式f(x)≤0对任意x∈(0,+∞)恒成立,求实数a的取值范围;
(Ⅱ)已知正项数列{an}的前n项和为Sn,且Sn=$\frac{{a}_{n}({a}_{n}+1)}{2}$,求证:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$>lnan+1

查看答案和解析>>

同步练习册答案