精英家教网 > 高中数学 > 题目详情
设x>0,y>0,且x+9y=6,则log3x+log3y的最大值是
 
考点:基本不等式,对数的运算性质
专题:不等式的解法及应用
分析:根据已知结合基本不等式,可得xy≤1,进而根据对数的运算性质,可得log3x+log3y的最大值.
解答: 解:∵x>0,y>0,且x+9y=6,
∴x+9y=6≥2
x•9y
=6
xy

xy
≤1,
即xy≤1,
故log3x+log3y=log3(xy)≤log31=0,
故log3x+log3y的最大值是0,
故答案为:0
点评:本题考查的知识点是基本不等式,对数的运算性质,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题“?x∈R,x2+x≥2”的否定是(  )
A、?x0∈R,x2+x≤2
B、?x0∈R,x2+x<2
C、?x∈R,x2+x≤2
D、?x∈R,x2+x<2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x-2y+2=0经过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆上位于x轴上方的动点,直线AS,BS与直线x=
10
3
分别交于M,N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值.
(3)当线段MN的长度最小时,在椭圆上有两点T1,T2,使得△T1SB,△T2SB的面积都为
1
5
,求直线T1T2在y轴上的截距.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f(x)+f(1),若直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,则实数k的取值范围为(  )
A、(2
2
-2,2
6
-4)
B、(
3
+2,
3
+
6
C、(2
2
+2,2
6
+4)
D、(4,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数f(x)=
-2x+1
2x+1
的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四面体的三视图如图所示,则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}是等比数列,则数列{an-an+1},{an•an+1}是什么数列?

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的外接球体积为(  )
A、
64
3
π
9
B、
256
3
π
9
C、
64
3
π
27
D、
256
3
π
27

查看答案和解析>>

科目:高中数学 来源: 题型:

sin(
13π
4
)•cos(-
3
)
tan(
23π
3
)
+
sin(-
21π
4
)
cos(
17π
6
)
化简的结果是(  )
A、-
5
6
12
B、
6
4
C、-
6
4
D、
5
6
12

查看答案和解析>>

同步练习册答案