精英家教网 > 高中数学 > 题目详情

若动点P,Q分别在曲线数学公式和直线2x+y=0上运动,则线段PQ长的最小值为________.


分析:根据图形的对称性,只须考虑曲线在第一象限的切线,如图,设与直线2x+y=0平行且在第一象限与曲线相切的直线方程为:y=-2x+b,切点为A(m,n),只须求出它到直线2x+y=0的距离线段PQ长的最小值.
解答:解:如图,设与直线2x+y=0平行且在第一象限与曲线相切的直线方程为:y=-2x+b,切点为A(m,n),
,∴y′=-
根据切线的几何意义得:-?m=
∴切点为A(),
它到直线2x+y=0的距离为:d==
则线段PQ长的最小值为
故答案为:
点评:本题考查利用导数研究曲线上某点切线方程,点到直线的距离公式的应用,注意线段PQ 取最小值时的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
2

(1)求异面直线PC与AD所成角的大小;
(2)若平面ABCD内有一经过点C的曲线E,该曲线上的任一动点Q都满足PQ与AD所成角的大小恰等PC与AD所成角.试判断曲线E的形状并说明理由;
(3)在平面ABCD内,设点Q是(2)题中的曲线E在直角梯形ABCD内部(包括边界)的一段曲线CG上的动点,其中G为曲线E和DC的交点.以B为圆心,BQ为半径的圆分别与梯形的边AB、BC交于M、N两点.当Q点在曲线段GC上运动时,试提出一个研究有关四面P-BMN的问题(如体积、线面、面面关系等)并尝试解决.
(说明:本小题将根据你提出的问题的质量和解决难度分层评分;本小题的计算结果可以使用近似值,保留3位小数)

查看答案和解析>>

科目:高中数学 来源:2009年上海市普陀区高考数学二模试卷(理科)(解析版) 题型:解答题

如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
(1)求异面直线PC与AD所成角的大小;
(2)若平面ABCD内有一经过点C的曲线E,该曲线上的任一动点Q都满足PQ与AD所成角的大小恰等PC与AD所成角.试判断曲线E的形状并说明理由;
(3)在平面ABCD内,设点Q是(2)题中的曲线E在直角梯形ABCD内部(包括边界)的一段曲线CG上的动点,其中G为曲线E和DC的交点.以B为圆心,BQ为半径的圆分别与梯形的边AB、BC交于M、N两点.当Q点在曲线段GC上运动时,试提出一个研究有关四面P-BMN的问题(如体积、线面、面面关系等)并尝试解决.
(说明:本小题将根据你提出的问题的质量和解决难度分层评分;本小题的计算结果可以使用近似值,保留3位小数)

查看答案和解析>>

同步练习册答案