精英家教网 > 高中数学 > 题目详情
1.设x是一个正数,记不超过x的最大的正整数为[x],令{x}=x-[x],且{x},[x],x成等比数列,则x=$\frac{\sqrt{5}+1}{2}$.

分析 由{x},[x],x成等比数列,可得[x]2={x}•x=(x-[x])•x,解出即可得出.

解答 解:∵{x},[x],x成等比数列,
∴[x]2={x}•x=(x-[x])•x,
解得[x]=$\frac{\sqrt{5}-1}{2}$x,
∵$\frac{\sqrt{5}-1}{2}$×$\frac{\sqrt{5}+1}{2}$=1.
∴可设x=k•$\frac{\sqrt{5}+1}{2}$(k∈N*).
∴$[\frac{\sqrt{5}+1}{2}k]$=k,
当k=1时,上式成立;
k≥2时,不成立.
∴x=$\frac{\sqrt{5}+1}{2}$.
故答案为:$\frac{\sqrt{5}+1}{2}$.

点评 本题考查了等比数列的通项公式及其性质、取整函数[x]的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.求下列方程的解集:
(1)3sin2x+2sinx-1=0
(2)2sin2x+3cosx=0
(3)cos2x=3cosx+1
(4)3(1-sinx)=cos2x+1
(5)sinx-sin$\frac{x}{2}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知某三棱锥的三视图(单位:cm)如图所示,那么该三棱锥的体积等于(  )
A.$\frac{3}{2}$B.2C.3D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式2x2-a$\sqrt{{x}^{2}+1}$+3>0对x∈R恒成立,则实数a的取值范围为(-∞,23).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式ax2+(a-1)x-1<0(a>0)的解集是(  )
A.{x|$\frac{1}{a}$<x<1}B.{x|-1<x<$\frac{1}{a}$}C.{x|1$<x<\frac{1}{a}$}D.{x|-$\frac{1}{a}$<x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知x满足条件2(${log}_{\frac{1}{2}}$x)2+9${log}_{\frac{1}{2}}$x+9≤0,求函数f(x)=(log2$\frac{x}{3}$)•(log2$\frac{x}{4}$)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足x2+y2-xy=2,则x2+y2+xy的取值范围(  )
A.(-∞,6]B.[0,6]C.[$\frac{2}{3}$,6]D.[1,6]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知cosα=-$\frac{4}{5}$,且α是△ABC的一个内角,求cos(α+$\frac{π}{6}$)的值.
(2)已知sin(φ+$\frac{π}{4}$)=$\frac{3}{5}$,且φ∈(${\frac{π}{2}$,π),求sinφ值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b,c分别是△ABC的内角A,B,C所对的边长,a=c,且满足bsinA=$\sqrt{3}$acosB.点O为△ABC外一点,OA=2OC=4,求平面四边形ABCO的面积的最大值.

查看答案和解析>>

同步练习册答案