精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,E、F分别为A1C1和BC的中点.
(1)求证:平面ABE⊥平面B1BCC1
(2)求证:C1F∥平面ABE.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)通过证明AB⊥平面B1BCC1,利用平面与平面垂直的判定定理证明平面ABE⊥平面B1BCC1
(2)取AC的中点G,连结C1G、FG,通过证明平面C1GF∥平面EAB,利用平面与平面平行的性质定理证明C1F∥平面ABE.
解答: 证明:(1)∵BB1⊥平面ABC,AB?平面ABC,
∴AB⊥BB1 又AB⊥BC,BB1∩BC=B,
∴AB⊥平面B1BCC1
而AB?平面ABE,
∴平面ABE⊥平面B1BCC1
(2)取AC的中点G,连结C1G、FG,
∵F为BC的中点,
∴FG∥AB又E为A1C1的中点∴C1E∥AG,且C1E=AG
∴四边形AEC1G为平行四边形,
∴AE∥C1G
∴平面C1GF∥平面EAB,
而C1F?平面C1GF,
∴C1F∥平面EAB.
点评:本题考查仔细与平面垂直,平面与平面垂直的判定定理以及平面与平面平行的性质定理的应用,考查空间想象能力以及逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三点A(-2,-1),B(x,2),C(1,0)共线,则x为(  )
A、7B、-5C、3D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={3k+2|0≤k≤667,k∈Z}.若在A中任取n个数,都能从中找出两个不同的数a,b,使a+b=2104,则n的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U={1,2,3,4},集合A={1,2,3},则∁UA=(  )
A、{1,2,3,4}
B、{1,2}
C、{4}
D、{1,2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是(  )
A、ρ=cosθ
B、ρcosθ=1
C、ρ=sinθ
D、ρsinθ=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为AD、CC1的中点,O为上底面A1B1C1D1的中心,则三棱锥O-MNB的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-lnx.
(1)求函数的单调区间与最值;
(2)若方程f(x)-k=0在区间[
1
e
,e]内有两个不相等的实根,求实数a的取值范围;
(3)当a=1时,函数g(x)=1-
f(x)
x2
,求证:
ln2
24
+
ln3
34
+…+
lnn
n4
1
2e
.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xOy中,圆C的方程为x2+y2=-2y+3,直线l过点(1,0)且与直线x-y+1=0垂直.若直线l与圆C交于A、B两点,则△OAB的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的顶点A固定,点A的对边BC的长是2a,边BC上的高为b,边BC沿一条定直线移动,求△ABC外心的轨迹方程.

查看答案和解析>>

同步练习册答案