精英家教网 > 高中数学 > 题目详情
设AB是过椭圆右焦点的弦,那么以AB为直径的圆必与椭圆的右准线(    )

A.相切             B.相离              C.相交               D.相交或相切

B

解析:设点A、B及线段AB中点M到右准线的距离分别为d1、d2、d,

则有==e.

=e.

<d.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个顶点为(0,
3
),F1,F2分别是椭圆的左、右焦点,离心率e=
1
2
,过椭圆右焦点的直线l与椭圆C交于M、N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在直线l,使得以线段MN为直径的圆过原点,若存在,求出直线l的方程;若不存在,说明理由.
(Ⅲ)若AB是椭圆C经过原点O的弦,MN∥AB,求证:
|AB|2
|MN|
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,以椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的中心O为圆心,分别以a和b为半径作大圆和小圆.过椭圆右焦点F(c,0)(c>b)作垂直于x轴的直线交大圆于第一象限内的点A.连接OA交小圆于点B.设直线BF是小圆的切线.
(1)求证c2=ab,并求直线BF与y轴的交点M的坐标;
(2)设直线BF交椭圆于P、Q两点,求证
OP
OQ
=
1
2
b2

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的一个顶点与抛物线C:x2=4
3
y
的焦点重合,F1,F2分别是椭圆的左、右焦点,且离心率e=
1
2
且过椭圆右焦点F2的直线l与椭圆C交于M、N两点.
(1)求椭圆C的方程;
(2)是否存在直线l,使得
OM
ON
=-2
.若存在,求出直线l的方程;若不存在,说明理由.
(3)若AB是椭圆C经过原点O的弦,MN∥AB,求证:
|AB|2
|MN|
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的一个顶点为(0,
3
),F1,F2分别是椭圆的左、右焦点,离心率e=
1
2
,过椭圆右焦点F2的直线l与椭圆C交于M,N两点.
(1)求椭圆C的方程;
(2)若AB是椭圆C经过原点O的弦,MN∥AB,求证:
|AB|2
|MN|
为定值.

查看答案和解析>>

同步练习册答案