精英家教网 > 高中数学 > 题目详情

【题目】我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献,这5部专著中有3部产生于汉、魏、晋、南北朝时期,某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )

A. B. C. D.

【答案】D

【解析】

利用列举法,从这5部专著中选择2部作为数学文化校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.

《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为数学文化校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为.故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司试销一种成本单价为500/件的新产品,规定试销时销售单价不低于成本单价,又不高于800/件.经试销调查,发现销售量(件)与销售单价(元/件)可近似看作一次函数的关系(如图所示).

1)由图象,求函数的表达式;

2)设公司获得的毛利润(毛利润=销售总价﹣成本总价)为元.试用销售单价表示毛利润,并求销售单价定为多少时,该公司获得最大毛利润?最大毛利润是多少?此时的销售量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题是否正确,正确的说明理由,错误的举例说明.

1)一条直线平行于一个平面,另一条直线与这个平面垂直,则这两条直线互相垂直;

2)如果平面平面,平面平面,那么平面与平面所成的二面角和平面与平面所成的二面角相等或互补;

3)如果平面平面,平面平面,那么平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①;根据2010年至2016年的数据(时间变量的值依次为)建立模型②

(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;

(2)你认为用哪个模型得到的预测值更可靠?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数

(1)求实数的值

(2)如果对任意,不等式恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数满足 ,则( )

A. 1 B. C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产一种机器的固定成本(即固定投入)为0.5万元,但每生产100台时,又需可变成本(即另增加投入)0.25万元.市场对此商品的年需求量为500台,销售的收入(单位:万元)函数为,其中是产品生产的数量(单位:百台).

(1)求利润关于产量的函数.

(2)年产量是多少时,企业所得的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017527日当今世界围棋排名第一的柯洁在与的人机大战中中盘弃子认输,至此柯洁与的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(1)请根据已知条件完成下面列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(2)为了进一步了解“围棋迷”的围棋水平,从“围棋迷”中按性别分层抽样抽取5名学生组队参加校际交流赛,首轮该校需派两名学生出赛,若从5名学生中随机抽取2人出赛,求2人恰好一男一女的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定函数和常数,若恒成立,则称()为函数的一个好数对”,已知函数的定义域为.

1)若(11)是函数的一个好数对,且,求

2)若(20)是函数的一个好数对,且当时,,判断方程在区间[1,8]上根的个数;

查看答案和解析>>

同步练习册答案