精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱ABC﹣A1B1C1中,已知∠BAC=90°,AB=AC=1,AA1=3,点E,F分别在棱BB1 , CC1上,且C1F= C1C,BE=λBB1 , 0<λ<1.

(1)当λ= 时,求异面直线AE与A1F所成角的大小;
(2)当直线AA1与平面AEF所成角的正弦值为 时,求λ的值.

【答案】
(1)解:建立如图所示的空间直角坐标系A﹣xyz.

因为AB=AC=1,AA1=3,

所以各点的坐标为A(0,0,0),E(1,0,1),A1(0,0,3),

F(0,1,2). .因为

所以 .所以向量 所成的角为120°,

所以异面直线AE与A1F所成角为60°.


(2)解:因为E(1,0,3λ),F(0,1,2),所以

设平面AEF的法向量为n=(x,y,z),

,且

即x+3λz=0,且y+2z=0.令z=1,则x=﹣3λ,y=﹣2.

所以 =(﹣3λ,﹣2,1)是平面AEF的一个法向量.

,则

又因为直线AA1与平面AEF所成角的正弦值为

所以 = ,解得,


【解析】建立如图所示的空间直角坐标系A﹣xyz.(1)推出相关点的坐标,求出向量 对应的向量,利用向量的数量积求出夹角即可.(2)求出平面AEF的法向量, ,利用向量的数量积求解直线AA1与平面AEF所成角的正弦值为 ,得到
【考点精析】解答此题的关键在于理解异面直线及其所成的角的相关知识,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系,以及对空间角的异面直线所成的角的理解,了解已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正三角形内切圆的半径是高的 ,把这个结论推广到正四面体,类似的结论正确的是(
A.正四面体的内切球的半径是高的
B.正四面体的内切球的半径是高的
C.正四面体的内切球的半径是高的
D.正四面体的内切球的半径是高的

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用计算机随机产生的有序二元数组(x,y)满足﹣1≤x≤1,﹣1≤y≤1.
(1)若x,y∈Z,求事件“x2+y2≤1”的概率.
(2)求事件“x2+y2>1”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1=a ﹣nan+1,且a1=2.
(1)计算a2 , a3 , a4的值,由此猜想数列{an}的通项公式,并用数学归纳法证明;
(2)求证:2nn≤a <3nn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1,an+1= (n=1,2,3,…),
(1)计算a1 , a2 , a3 , a4
(2)猜想an的表达式,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的图象过点(﹣1,2),且在点(﹣1,f(﹣1))处的切线与直线x﹣5y+1=0垂直.
(1)求实数b,c的值;
(2)求f(x)在[﹣1,e](e为自然对数的底数)上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0)上任意一点到两焦点距离之和为 ,离心率为 ,左、右焦点分别为F1 , F2 , 点P是右准线上任意一点,过F2作直线PF2的垂线F2Q交椭圆于Q点.
(1)求椭圆E的标准方程;
(2)证明:直线PQ与直线OQ的斜率之积是定值;
(3)证明:直线PQ与椭圆E只有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( + )x3(a>0,a≠1).
(1)讨论函数f(x)的奇偶性;
(2)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平行四边形ABCD中,A(1,1)、B(7,3)、D(4,6),点M是线段AB的中点线段CM与BD交于点P.
(1)求直线CM的方程;
(2)求点P的坐标.

查看答案和解析>>

同步练习册答案