精英家教网 > 高中数学 > 题目详情

【题目】若a、b是方程2(lg x)2-lg x63=0的两个实根,求lg(ab)·(logab+logba)的值.

【答案】12

【解析】原方程可化为2(lg x)26lg x+3=0.

设t=lg x,则方程化为2t26t+3=0,

t1t2此方程的两个实根,

t1+t23,t1·t2.

又∵a、b是方程2(lg x)2-lg x63=0的两个实根,

可令t1=lg a,t2=lg b,

即lg a+lg b=3,lg a·lg b=.

∴lg(ab)·(logab+logba)

=(lg a+lg b)·

=(lg a+lg b)·

=(lg a+lg b)·

即lg(ab)·(logab+logba)=12.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知幂函数(mZ)为偶函数,且在区间(0,+∞)上是单调增函数.

(1)求函数f(x)的解析式;

(2)设函数,若g(x)>2对任意的xR恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从6名男生和4名女生中任选4人参加比赛,设被选中女生的人数为随机变量ξ,求:
(Ⅰ)ξ的分布列;
(Ⅱ)所选女生不少于2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥C﹣OAB中,CO⊥平面AOB,OA=OB=2OC=2,AB=2 ,D为AB的中点.
(Ⅰ)求证:AB⊥平面COD;
(Ⅱ)若动点E满足CE∥平面AOB,问:当AE=BE时,平面ACE与平面AOB所成的锐二面角是否为定值?若是,求出该锐二面角的余弦值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx= ,若f1-x=f1+x),且f0=3.

(Ⅰ)求bc的值;

(Ⅱ)试比较m∈R)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂今年拟举行促销活动,经调查测算,该厂产品的年销售量(即该厂的年产量)x(万件)与年促销费m(万元)(m≥0)满足x=3-.已知今年生产的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

(1)将今年该产品的利润y万元表示为年促销费m(万元)的函数;

(2)求今年该产品利润的最大值,此时促销费为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资根据长期收益率市场预测投资类产品的收益与投资额成正比投资类产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0125万元和05万元

1分别写出两类产品的收益与投资额的函数关系;

2该家庭有20万元资金全部用于理财投资问:怎么分配资金能使投资获得最大收益其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2ax+5(a>1).

(1)若f(x)的定义域和值域均是[1,a],求实数a的值;

(2)若f(x)在区间(﹣∞,2]上是减函数,且对任意的x∈[1,a+1],总有f(x)≤0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体PABCD的直观图及三视图如图所示,EF分别为PCBD的中点.

I)求证:EF∥平面PAD

II)求证:平面PDC⊥平面PAD.

查看答案和解析>>

同步练习册答案