精英家教网 > 高中数学 > 题目详情
在△ABC中,BC=3,CA=5,AB=7,则
CB
CA
的值为(  )
分析:由余弦定理及已知中三角形三边长,可求出C角的余弦值,进而代入向量数量积公式,可得答案.
解答:解:∵△ABC中,BC=3,CA=5,AB=7,
故cosC=
BC2+AC2-AB2
2BC•AC
=
9+25-49
2×3×5
=-
1
2

又∵C为三角形内角
故C=
3

CB
CA
=|
CB
|•|
CA
|•cosC=-
15
2

故选C
点评:本题考查的知识点是平面向量的数量积的运算,余弦定理,其中由余弦定理求出C角的余弦值是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,|BC|=2|AB|,∠ABC=120°,则以A,B为焦点且过点C的双曲线的离心率为(  )
A、
7
+2
3
B、
6
+2
2
C、
7
-2
D、
3
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,(
BC
+
BA
)•
AC
=|
AC
|2
BA
BC
=3
|
BC
|=2
,则△ABC的面积是(  )
A、
3
2
B、
2
2
C、
1
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,BC=1,∠B=2∠A,则
AC
cosA
的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,BC=6,BC边上的高为2,则
AB
AC
的最小值为
-5
-5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区二模)在△ABC中,BC=2,AC=
7
B=
π
3
,则AB=
3
3
;△ABC的面积是
3
3
2
3
3
2

查看答案和解析>>

同步练习册答案