精英家教网 > 高中数学 > 题目详情

【题目】已知曲线的极坐标方程是,以极点为原点,以极轴为轴的正半轴,取相同的单位长度,建立平面直角坐标系,直线的参数方程为 .

(1)写出直线的普通方程与曲线的直角坐标方程;

(2)设曲线经过伸缩变换得到曲线,曲线上任一点为,求的取值范围.

【答案】1) 直线的普通方程为,曲线的直角坐标方程为.

2的取值范围是.

【解析】

试题()利用,将转化成直角坐标方程,利用消参法法去直线参数方程中的参数,得到直线的普通方程;()根据伸缩变换公式求出变换后的曲线方程,然后利用参数方程表示出曲线上任意一点,代入,根据三角函数的辅助角公式求出其范围即可.

试题解析:()直线的普通方程

曲线的直角坐标方程为

)曲线经过伸缩变换得到曲线的方程为,即

又点在曲线上,则为参数)

代入,得

所以的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断函数的奇偶性,并说明理由;

(2)若对于任意的恒成立,求满足条件的实数m的最小值M .

(3)对于(2)中的M,正数ab满足,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,过点的直线交椭圆于两点,为坐标原点.

(1)若的斜率为的中点,且的斜率为,求椭圆的方程;

(2)连结并延长,交椭圆于点,若椭圆的长半轴长是大于的给定常数,求的面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为1的正方形,垂直于底面.

1)求平面与平面所成二面角的大小;

2)设棱的中点为,求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数溶度,制定了空气质量标准:

某市政府为了打造美丽城市,节能减排,从2010年开始考查了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号为字母的,前13个视为单号,后13个视为双号).王先生有一辆车,若11月份被限行的概率为0.05.

(1)求频率分布直方图中的值;

(2)若按分层抽样的方法,从空气质量良好与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量中度污染的概率;

(3)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如表:

根据限行前6年180天与限行后60天的数据,计算并填写列联表,并回答是否有的把握认为空气质量的优良与汽车尾气的排放有关.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四名同学在回忆同一个函数,甲说:我记得该函数定义域为,还是奇函数”.乙说:我记得该函数为偶函数,值域不是”.丙说:我记得该函数定义域为,还是单调函数”.丁说:我记得该函数的图象有对称轴,值域是,若每个人的话都只对了一半,则下列函数中不可能是该函数的是(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,椭圆的四个顶点围成的四边形的面积为4.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)直线与椭圆交于 两点, 的中点在圆上,求为坐标原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面推理过程中使用了类比推理方法其中推理正确的个数是

①“数轴上两点间距离公式为平面上两点间距离公式为”,类比推出“空间内两点间的距离公式为“;

②“代数运算中的完全平方公式”类比推出“向量中的运算仍成立“;

③“平面内两不重合的直线不平行就相交”类比到空间“空间内两不重合的直线不平行就相交“也成立;

④“圆上点处的切线方程为”,类比推出“椭圆 上点处的切线方程为”.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参数方程为 (为参数).

(Ⅰ)求曲线上的点到直线的距离的最大值;

(Ⅱ)过点与直线平行的直线与曲线 交于两点,求的值.

查看答案和解析>>

同步练习册答案