精英家教网 > 高中数学 > 题目详情

【题目】已知fx)是定义在R的奇函数,且当x<0时,fx)=1+3x

(1)求fx)的解析式并画出其图形;

(2)求函数fx)的值域.

【答案】(1),图像见解析;(2).

【解析】

(1)f(x)是定义在R的奇函数,可得f(0)=0,f(-x)=-f(x),当x<0时,f(x)=1+3x.可得x>0的解析式;描点作图;(2)根据图象可得函数f(x)的值域.

(1)由题意,fx)是定义在R的奇函数,可得f(0)=0,f(-x)=-fx),

x<0时,fx)=1+3x

那么x>0时,-x<0,即f(-x)=1-3x=-fx),

fx)=3x-1

fx)的解析式为

描点作图

表格:

xx>0)

1

2

3

y=3x-1

2

5

8

xx<0)

-3

-2

-1

y=1+3x

-8

-5

-1

(2)根据图象可得函数fx)的值域为R

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“辗转相除法”的算法思路如右图所示.记R(a\b)为a除以b所得的余数(a,b∈N*),执行程序框图,若输入a,b分别为243,45,则输出b的值为(

A.0
B.1
C.9
D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察如图等式,照此规律,第n个等式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 在区间(﹣∞,2)上为单调递增函数,则实数a的取值范围是(
A.[0,+∞)
B.(0,e]
C.(﹣∞,﹣1]
D.(﹣∞,﹣e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知k∈R,直线l1:x+ky=0过定点P,直线l2:kx﹣y﹣2k+2=0过定点Q,两直线交于点M,则|MP|+|MQ|的最大值是(
A.2
B.4
C.4
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)如图,在多面体中, 是正方形, 平面, 平面, ,点为棱的中点.

(1)求证:平面平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x∈(-1,1)),有下列结论:

(1)x∈(-1,1),等式f(-x)+fx)=0恒成立;

(2)m∈[0,+∞),方程|fx)|=m有两个不等实数根;

(3)x1x2∈(-1,1),若x1x2,则一定有fx1)≠fx2);

(4)存在无数多个实数k,使得函数gx)=fx)-kx在(-1,1)上有三个零点

则其中正确结论的序号为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(

(1)若,求曲线处的切线方程.

(2)对任意,总存在,使得(其中的导数)成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,C是以AB为直径的圆O上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.
(Ⅰ)求证:直线l⊥平面PAC;
(Ⅱ)直线l上是否存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余?若存在,求出|AQ|的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案