精英家教网 > 高中数学 > 题目详情

为正方形的中心,四边形是平行四边形,且平面平面,若.

(1)求证:平面.
(2)线段上是否存在一点,使平面?若存在,求的值;若不存在,请说明理由.

(1)要证明线面垂直,则可以根据线线垂直,结合判定定理来得到。(2)的值为1

解析试题分析:解:(1)在正方形中,.
,∴.
,∴平行四边形为菱形,∴.
又∵平面平面,∴平面,∴
,∴平面.
(2)存在线段的中点,使平面.
是线段的中点,中点,∴.
平面平面,∴平面
此时的值为1.     
考点:线面垂直,线面平行
点评:主要是考查了线面的位置关系的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.   
(1)证明:平面
(2)线段上是否存在点,使所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD
PA=BC=1,PD=AB=,E、F分别为线段PDBC的中点.

(Ⅰ) 求证:CE∥平面PAF
(Ⅱ)在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,点在圆上,矩形所在的平面和圆所在的平面互相垂直,且.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,,点分别为的中点.

(1)求直线与平面所成角的正弦值;
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四面体ABCD中,AB⊥BD、AC⊥CD且AD =3.BD=CD=2.

(1)求证:AD⊥BC;
(2)求二面角B—AC—D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.

(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点E在BC边的何处,都有
(3)当为何值时,与平面所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在长方体中,中点.(Ⅰ)证明:;(Ⅱ)求与平面所成角的正弦值;(Ⅲ)在棱上是否存在一点,使得∥平面?若存在,求的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,S是正方形ABCD所在平面外一点,且SD⊥面ABCD ,AB=1,SB=.

(1)求证:BCSC;
(2) 设M为棱SA中点,求异面直线DMSB所成角的大小
(3) 求面ASD与面BSC所成二面角的大小;

查看答案和解析>>

同步练习册答案